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ABSTRACT

This dissertation considers the problem (usually called the shaping
filter problem) of synthesizing linear systems whose responses to white noise
input proceases and appropriate sets of random initial conditions will be
stochastic processes whose covariance functions are prescribed functions of

two variables,

A detailed review of previous work on this problem is presented and the
limitations of and the errors in this previous work are carefully pointed out.
The properties of weighting functions of systems characterizable by finite-
order linear differential equations are developed in detail and these results
are used to develop the properties of the covariance functions of the responsés

of such systems to white noise inputs and random initial conditiona,

Based on this work, exact solutions to the shaping filter problem are
presented for certain special cases and some discussion of predictability of the
processes is presented. Attention is then focused on the general problem and by
means of the Schauder Fixed Point Theorem and by Picard’s method of successive
approximations the existence of physically realizable shaping filters is estab-
lished for a large class of separable covariance functions. The gqueation of the
uniqueness of the shaping filter and its relationship to the covariance matrix
of the set of random initial conditions is investigated. It is shown that if
an appropriate set of random initial conditions is specified, then the weighting
function of the shaping filter is unique up to a multiplicative factor of % 1.
The further requirements on the covariance function in order to guarantee that
the shaping filter can be characterized by a finite-order, linear differential
equation with continuous coefficients are given as well as certain lesser re-

quirements which permit easy analog simuletion.
Some brief comments are made relative to computational requirements and

how they can best be carried out and the pertinent references are cited, Finally

the two main areas of applications of shaping filters are briefly outlined.

v
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CHAPTER 1

INTRODUCTION

1.1 A GENERAL DESCRIPTION OF THE PROBLEM

A problem of some current interest in the field of stochastic processes

can be described briefly as follows, (see Figure 1).

RANDOM INITIAL
CONDITIONS

{rm} LINEAR SYSTEM |—» {x()}

FIGURE 1

Given the covariance function F(t,,tz) of some continuous in the mean stochas-
tic process, determine the weighting function and/or differential equation, if
appropriate, of a continuous, physically realizable, linear system and the co-
variances of a set of random initial conditions, if required, such that the
response {X(t)} of the system to a white noise input process {Y{t)} and the set
of random initial conditions will be a stochastic process whose covariance
function r,,(:‘,tz) satisfies the equality Fxx(t,,tz) = F(t,,tz). This problem
which will be referred to from hereon as the shaping filter problem,* has not
yet been solved for the general case where I'(t,,t,) is an arbitrary continuous
covariance function; i.e., an arbitrary, bounded, nonnegative-definite, con-
tinuous function defined on a region T X T of the real plane where T is an
interval of the real line. However, by suitably restricting the class of ad-
missible covariance functions and the interval T, certain fairly definitive
results have been obtained. These results are summarized in the following

section.

This dissertation is devoted to a study of the shaping filter problem
for the class of separable covariance functions, where T is a finite or semi-
infinite (to the right) interval, and to the relationship between the properties
of the covariance function and the possibility of characterizing the shapirg
filter by a finite-order, linear differential equation. Particular emphasis

is placed on the goal of obtaining the solution to the problem in a form

.1here is, of course, a related problem for discrete parameter stochastic processes; but, since these
two problems are quite closely related, attention herein is directed primarily to the continuous
parameter case.



directly applicable in engineering practice, as is proper for a dissertation
in engineering. Finally, the applications of the solution to the shaping
filter problem to the problems of analog simulation and linear, least-squares

filtering is discussed.

1.2 HISTORICAL REVIEW OF THE SHAPING FILTER PROBLEM

In order to place the results obtained in this dissertation in proper
perspective, it is necessary to have a precise summary of all significant pre-
viously published works on the shaping filter problem. However, before such

a summary is given, a brief chronological sketch of this work is in order,

The first significant result relative to the shaping filter problem was
apparently obtained by Wold [1,1938] for discrete parameter stationary® pro-
cesses and is part of his fundamental decomposition theorem [1,p.89]. Kolmogorov
(2,1939; 3,1941; 4,1941) then put Wold's decomposition theorem in an analytic
setting and obtained some new theorems for discrete parameter stationary pro-
cesses, parts of which again pertain to the shaping filter problem. Indepen-
dently, Wiener [5,1942] obtained Kolmogorov’s results for discrete parameter
stationary processes with absolutely continuous spectral distribution functions
and generalized the results to include continuous parameter stationary processes
with absolutely continuous spectral distribution functions, Wiener obtained
thereby, as part of his results, the first solution of the shaping filter pro-
blem for continuous parameter stationary processes. Then Hanner [6,1949] and
Karhumen [7,1950] obtained, by different methods, the continuous parameter
analog of the Wold decomposition theorem, parts of which again pertain to the
shaping filter problem. Bode and Shannon [8,1950], in their simplified heu-
ristic derivation of Wiener’s results on linear, least-squares, prediction and
filtering theory stressed the solution of the shaping filter problem as an
important step in their method. The next significant result relative to the
shaping filter problem was obtained by Darlington [9,1959] in his generaliza-
tion of Bode and Shannon’s work so as to include nonstationary processes.

While Darlington did make a good start on the problem for continuous parameter
nonstationary processes, he did not obtain very useful results as will be clear
from later discussion. Two months later, Batkov [10,1959] published a paper
which presents three methods for solving the shaping filter problem, including
an algebraic method using various partial derivatives of the covariance func-
tion, for a certain class of continuous parameter nonstationary processes. As

wil]l be shown later, Batkov's algebraic procedure only works for a rather

.Slationary should elways be interpreted as “wide-sense stationary’.



specialized subclass of the class claimed. Later in the same year, Sondhi and
Higgins [11,1959) presented a solution to a modified form of the shaping filter
problem requiring the use of several white noise sources., Nothing more will be
said of this work because interest in this dissertation is restricted to the
use of one white noise input process, Finally, Leonov [12,1960] presented a
rather nice mathematical solution to the shaping filter problem for continuous
parameter processes (both stationary and nonstationary) in terms of expansions
in orthogonal functions.

In the following paragraphs a precise critical summary of the above
mentioned work will be given.

1.2.1 Summary of Previous Work for Stationary Processes

Since no useful purpose would be served by it insofar as this dissertation
is concerned, no attempt will be made to summarize the previous work for sta-
tionary processes individually as cited in the chronological sketch. Rather, an
over-all summary will be given, the details of which can be found in the bookllby
Doob [13,pp.527-559, 569-590] and Grenander and Rosenblatt [14,pp.65-82]. Only

the continuous case is considered and, naturally, T = (-», o).

If the stochastic process {Y(t)}* is stationary and continuous in the mean,
then it has the spectral representation®®

rie) = [ etzmitaz(n) (1-1)

where the process {Z(A)} has orthogonal increments and E[dZ(A\)|2 = dF(A). F(A)
is called the spectral distribution function of {Y(t)} and

Pyplr) = E¥(e) vie +7) = [ et2m™ dp(n) (1-2)
-®
Furthermore, F(A) is nondecreasing and since
[ ]
J dFN) = T0) < w (1-3)
-

—————————

.{Y(t)} is assumed to be real velued.

**For & definition of all stochastic integrals herein see Reference 13, p. 426.



F(\) is also of bounded variation. Hence, F(A) can be decomposed into the sum

of three nondecreasing functions
FIN) = F, (X)) + F, (N) + Fs(K) (1-4)

where F,(\) is the jump function part of F(A), F,(A) is the absolutely contin-
uous part of F(A), and F,(N\) is the continuous singular part of F()\). This
decomposition of F(A) corresponds to a decomposition of {Y(t)} into three
mutually orthogonal processes {Y,(t)}, {Y,(t)}, and {Y,(t)} with spectral dis-
tribution functions F,(A), F,(A) and F3(K) respectively,

If {Y(t)} is applied to the input of a linear sysrem whose frequency

response function,®* G(A), satisfies the condition

[ 1602 dFIA) < @ (1-5)
-®
then the system output, {X(t)}, will be a continuous in the mean, stationary

process whose spectral distribution function, FX(K), is given by

A
o = f a2 arin (1-6)

It should be noted that G(A) is not, in general, required to be in L, (i.e.,
A
it is not required that [ |GIA)]2 dX < ©). From (1-6) it follows that FX(K)
-
is absolutely continuous if F(A) is. If F(A) is absolutely continuous and if
FF(A)]2 = F'(X), then (1-1) can be replaced by

Yie) = [ ed2mAt g(x) aZ(n) (1-7)

-o
where {Z(A)} has orthogonal increments and E|dZ(A)|? = dA. On the other hand
suppose {Y(t)} is generated from a process {V(t)} according to the equation

vier = [ wr) avie - 1) (1-8)

[ ]
where {V(t)} has orthogonal increments with EldV(t)|2 - dt and _L |wir)|2dr
< @ .. Then

@®
Prpley, t,) = [ W - 6) W, - 6) db (1-9)
-e

6(\) is Doob’s gain function C{A).



From (1-9) it follows that {Y(t)} is stationary and continuous in the mean,
Furthermore
A © ®
F(X) =f |GIA) |2 dX < f |G(A) |2 aN = f (Wir)|2 dT < @ (1-10)

where G(A) is the Fourier Transform of W(7) and, hence, F(A) is absolutely

continuous and F'(A) = |G(A)|2. Formally considering the increments of {V(t)}
to be given by
ts
Vit - vie,) = f ole) ae (1-11)
ty

where {U(t)} is a white noise process, (1-8) represents the response of a
linear system with weighting function, W(7), to a white noise input proceas
and (1-9) and (1-10) represent well known results which are usually obtained

in a less rigorous way by engineers.*

As a conseguence of the above results, a simple necessary and sufficient
condition for the existence of a solution to the shaping filter problem for
continuous in the mean, stationary processes can be stated, providing the
requirement of physical realizability is waived. They are: If F(A) is the
spectral distribution function corresponding to the given covariance function,
I'7), then a proceas, {Y(t)}, whose covariance function I'y(7) satisfies the
equality ['p(7) = ['(7) can be generated from a white noise process by means
of a linear system if and only if F(A) is absolutely continuous. Moreover,
any linear system whose frequency response function, G(\), satisfies the
equality |[GIA)]|2 = F'(A\) almost everywhere can be used to generate such a
process, {Y(t)}. More generally, even if F(A) is not absolutely continuous,
the above still applies to the absolutely continuous part of F(A); i.e., to
F,{(\) in the decomposition given above. If the requirement of physical reali-
zability 1s not waived, then the above condition must be strengthened somewhat,
Many years ago, Paley and Wiener [15, p.16, Theorem XII] showed that
if fc IGIN)]2 dA < @ , where G(A) is the frequency response function of a

-®
linear system, then the system is physically realizable if and only if**

[ lesG? (1-12)

-o 142

In view of the required equality |G(A)|% = F'(A) i.e., physical realizability
of the linear system (the shaping filter) requires the additional condition

.1\0 ususl engineering procedure could perhaps be rigorized at the expense of introduciag
generalized linear functionals. ®

**The assumed continuity of [(r) gusrentees that J |0(A)'z d\ < ®
-



: \

[ losr W], (1-13)

o 14A2
i.e., for physical realizability of the shaping filter, F(A) must be absolutely
continuous and satisfy (1-13). Since the above conditions depended only on the
magnitude of G(A), it is clear that these conditions do not uniquely determine
the shaping filter. A desirable* way of rendering the shaping filter essentially
unique (to determine the weighting function uniquely except on a set of Lebeaque
measure zero) is to require it to be a minimum phase filter; i.e., to require
that G(A) £ 0 for Im A < 0. Such a G(A) is given by the (loss-phase) integral

_ 1 e g Fle
G = exp[-zﬂi -fm TRTTRFT ] (1-14)

Except for some brief comments relative to some special cases of stationary
processes which appear at appropriate places throughout the remainder of this
dissertation, this concludes the summary of previous work for stationary processes.
Clearly, for continuous in the mean, stationary processes and T = (- o, ®) the
shaping filter problem had been resolved in rather definitive terms prior to
1950,

1.2.2 Summary of the Work of Darlington

In his paper [9], Darlington presents a generalization of Bode and Shannon's
results [8] so as to include nonstationary processes. In his generalization,
as in Bode and Shannon’s original procedure, the central problem, of course, is
that of resolving the shaping filter problem. As will be clear from the summary
to follow, the shaping filter problem considered by Darlington is somewhat dif-
ferent from (but related to) that described in Section 1.1.

Afcer some preliminary remarks on the Bode-Shannon model and its use of
shaping filters, Darlington turns his attention to the shaping filter problem,
proceeding as follows. If W(t,7) denotes the weighting function of a linear
system then the covariance function I'(t,, t,) of the output of the system, when
the input is a white noise process, is given, when it exists, by the expression

Cle, ¢ = [ Wy, 7) We,7) dr (1-15)

Note that, since the lower limit of the integral is - « , it has tacitly been

assumed that the white noise input has been applied to the system continuously

.Thc inverse filter corresponding to a physically reslisable, minimum phase filter is physically
reslizable and stable. This is importent for spplicstions to linesr, lesat-squeres filtering
and prediction theory.

**The shaping filter problem is spparently still unresolved for stationery processes which are
not continuous in the mean.



throughout the infinite past. If the system is physically realizable, then
W(e, 7) =0 for 7 > t and the upper limit of the integral in (1-15) can be
replaced by min{t,, t,]. Letting W3{¢, 7) denote the weighting function of the
adjoint system, W(t,7) = W(7,t), and ['(t,, t,) can be expressed in the equiva-
lent form

@
Fle,, t,0 = f Wm0, ¢,)dr (1-16)
-®
Since (1-16) expresses ['(t,, t,) as the convolution of two weighting functions,
'(t,, t,) can be interpreted as the weighting function of the nonphysically
realizable (self-adjoint) system composed of the original system in cascade with

its corresponding adjoint system.

Because Darlington was unable to find a suitable nonstationary analog of
the loss-phase integral (i.e., Equation 1-14) for solving the nonstationary
shaping filter problem, he restricts his attention to systems which are com-
pletely characterized by finite-order, linear differential equations and seeks
an analog, in terms of operations with differential equations, of the usual
procedure of factorization of the rational spectral density function in the

corresponding stationary case,

When the system is completely characterized by a finite-order linear
differential equation,* then its response V is related to its excitation E by

an expression of the form

B(p, t) V(t) = H(t) Alp, t) E(t) (1-17)
where B(p, t) and A(p, t) are polynomials in p with time-varying coefficients
where p = 5% i l.e.,

Blp, ¢t) = ph + by (t)p™ T 4 L4 byle)

(1-18)
Alp, t) = p" 4 ag_,(t)p™"" "' 4 . . 4 aglt)

and H(t) is a time-varying scale factor. Any set of n linearly independent

solutions, say U,(t), i =1, . . «y n, of

B(p, t) V(t) = 0 (1-19)

*See Chaptera 2 and 3 of this dissertation for details of some of the followiag discussiun,



form a set of basis functions (bf’'s) for B(p, t) and for the system. Similarly,

any set of m linearly independent solutions of
A(p, t) E(t) = 0 (1-20)

form a set of basis functions for A(p, t) and are called the zero response func-
tions (zrf’s) of the system. If the system is also time-invariant (stationary),

5ot where the Sa's are the familiar

then the bf’s and zrf’s are exponentials,*e
poles and zero of the system transfer function., The bf’s and zrf’s of non-
stationary systems play analogous, equally important roles even when they cannot

be represented by simple coefficients like Sa.

When two systems are cascaded where both are completely characterized by
a finite-order differential equation, then the over-all system is completely
characterized by a finite-order differential equation corresponding to the
product of the differential equations of the two given systems. In terms of

operators, the product may be represented by **
B, V, = Hy A E, B, = H, A, V, , BY = HAE (1-21)

where BV = HAE is the differential equation of the over-all system. As

Darlington indicates, the operators B, A, and H can be determined from B,, B,,

A, A
‘l zl

corresponds formally to the convolution of the weighting functions of the two

H,, and H, by means of derivative and algebraic operations. This

given systems. Similarly, corresponding formally to the sum of weighting func-
tions is a suitably defined sum of their corresponding differential equations

represented by

B,V, = H A E , B, V, = H, A, E 1o22)

Vo= ¥, +V, BV = HAE

The operators B and A and the scale factor H can also be determined from B,
B,, Ay, A,, Hl, and I, by means of derivative and algebraic operations. Further,
the bf’s of B are those of B, plus those of B,, but the bf’'s of A (the z2rf’s of

the sum system) are not related to those of 4, and Ag in any simple way.

Corresponding to the system characterized by (1-17) is its related ad-
joint system which is completely characterized by the adjoint differential

equation

B%(p, t) r(t) = £ H(t) A%(p, t) Eflt) (1-23)

A ———————

. . .

Or linear combinations of them.
LN

Suppressing the arguments for convenience of notation.



corresponding to (1-17), the operators B%(p, t) and A%(p, t) being easily
determined from B(p, t) and A(p, t). When the system is physically realizable,
the weighting function corresponding to (1-17) can be expressed in the form*

Uu,(t)
Wie, 7) = Z ‘ Jy(7) , t>T
be (1-24)

0 , t < T

and that corresponding to (1-23); i.e., that of the nonphysically realizable
adjoint system; in the form

n
U, (7)
Wele,7) = E : Jle) y t < T
gy TTE (1-25)
0 » £ 2T

The product of (1-17) and (1-23) corresponds to the convolution of N(t, 7) and
W3(t, 7) as in (1-16) and is written as

Bl(p, ¢) V(t) = £ H2(¢) AV(p, ¢) E(¢) (1-26)

From the discussion following (1-16), it is clear that the weighting function
of the system characterized by (1-26) is I'(¢,, ¢t,), which, from (1-16), (1-24),
and (1-25), can be written in the form

r zn: Uu,(t,)

ey RJUPUDITRER

i{=
t,) = # n (1-27)

Deite) o (e <
L2 17:{?77 Qi) , t, < ¢,

The symmetry of I'(t,, t,) expresses the fact that (1-26) is a self-adjoint

equation.

With this background, Darlington takes up the shaping filter problem as
encountered in the Bode-Shannon model, assuming that the signal, S(t), and
noise, N(t), are generated from uncorrelated white noise sources by means of
physically realizable systems characterized by finite-order, linesr differential
equations. If the bf’s and 2rf’s of the systems are known, then the weighting
functions of the systems, Wg(t,7) and W, (t,7), ere easily determined and

.Auu-ing order n of 8 > order n of 4.



i0

rs(t,,:,) and I'y(¢;,¢,) found from (1-16). Also, differential equations of the
form in (1-26) can be found for both I'gle,, t,) and I'y(¢,,t,) by forming the
product of the corresponding differential equations and their adjoints as de-
scribed above (even if the bf’s and zrf’s of the generating systems are unknown).
If F=S +N, then [plt,t,) =Tglt,t,) +T)le,,t,) and a differential equation
of the form in (1-26) whose corresponding weighting function is I'){t,,t,) can be
found from I'p(t,, t,) itself or by summing the differential equations corresponding
to rs(t‘,tz) and r,(t,,tz) in case F’(t‘,tz) is unknown, In this way, there is
determined

Bl(p, t) vit) £ H2(t) Al(p, ¢) El¢)
£ H30e) ALlp, ¢) Elt)

+ H2(e) AG(p, ¢) Ele)

8[;(p,t) Vie)
BLip, ¢) Vi)

n

(1-28)

The bf’'s of BE(p,t) are those of Bg(p,t) and Bg(p,t) and are even in number, one-
hal f of them being the bf’s of the systems used to generate S(t) and N(t) and the
other half being the bf°’s of the correapondlng nonphysically realizable adjoint
systema. On the other hand, the bf’s of A (p,t). again even in number, are not
simply related to the bf’s of As(p,t) and Ar(p.!) and must be found as the solu-
tions as

ADtp, 6) ELe) = 0 (1-29)

This corresponds to the calculation of the zeros of the rational signal-plus-
noise spectral density function in the stationary case in which the spectral
densities of S and N are added (corresponding to forming the sum of the dif-
ferential equations for f}(t,,tz) and [,(t,,¢,)) to get the spectral density of
F. The addition retains the poles but the zeros must be calculated as the zeros
of a polynomial (corresponding to finding the solutions of Equation 1-29),

Now the shaping filter problem, as considered by Darlington, is that of
finding a weighting function W,(t,T) such that the systems corresponding to
both it and its inverse are physically realizable and behave suitably as 7 -~ @
for all t and such that

@®
Fple, e,) = !: W (e ) WplT e )d7 (1-30)
To do this he firat finds the bf’s of Br(p,t) and Ar(p,!) from the known bf’s
of Br(p,t) and Br(p,t) and by solving (1-29). The problem then is to sasign
one-half of them to W,{t,7) and the remaining half to W3{t,7) 30 that the re-
quirements demanded of W,(t,7) as stated above are met, if possible. Darlington

shows that this is possible and shows how to do it providing the coefficients of



11

the differential equations characterizing the systems used to generate S and N
are regular at t = w, are periodic, or are of moderate variation. In these
cases the bf's either become exponentials as t = t ®, are exponentials multi-
plied by periodic coefficients, or are dominated by exponentials as t = t o
and those bf’s associated with exponentials et where R,S, < 0 are assigned
to ¥,(t,7) just as in the stationary case, the ¥,(t,7) thereby obtained having

the required properties.

Before proceeding to a summary of Batkov’s work, it should be noted that
in Darlington’s work it was assumed that T = (- o,@) and that F,(t,,tz) was
known to be the sum of two processes which were generated from uncorrelated
vhite noise sources by physically realizable systems, Further, no terms due
to initial conditions are present in rk(t,,tz) or r,(tl,tz) because of the
assumption of stability of the S and N shaping filters and the choice of inter-
val T.

1.2.3 Summary of the work of Batkov®

In his paper [10], Batkov, like Darlington but from a somewhat different
point of view, also studies the properties of weighting functions for physically
realizable linear systems characterized by finite-order, linear differential
equations and the properties of the covariance functions of the stochastic
processes at their outputs when their inputs are white noise processes with the
systems starting from rest; i.e., the initial conditions are zero. On the basis
of this study, he presents three methods for solving the shaping filter problem
for this class of nonstationary stochastic processes., The first of these methods
is, in essence, that of Darlington but is not quite as fully developed as
Darlington's. The second is an algebraic method using the discontinuities of
the partial derivatives of r(tl,tz) with respect to t, along the line ¢, = t,;
but, as mentioned earlier, it is much more restricted in application than claimed.
The third uses a method due to Levy [15]) for solving a certain type of nonlinecar
Volterra integral equation of the second kind by resolving kernels, the resolv-
ing kernals being solutions of linear Fredholm integral equations of the second
kind. These methods and the results leading up to them are briefly summarized

below.

Specifically, Batkov considers a physically realizable system characterized

by the differential equation**

Lip,t) X(t) = M(p,t) Y{¢) (1-31)

*Batkov's paper contains several functions and operators with arguments incorrect.

..Mlny of the results stated above are derived in detsil in Chapters 2 snd 3 of this
dissertation.
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where
n
.
dt d
s Laan i o4 ..
Lip.e et A (1-32)

i j
d

b,(t) e

jro o1

Mip,t)
and the a (t) and bj(t) have n-derivatives in the region of interest. The
weighting function G(t,7) of a system characterized by (1-31) with ¥(p,t) =1
is the solution of

Lip,t) Gle,7) = &(t - T1) (1-33)

with zero initial conditions. The weighting function, G%(t,7) of the corres-

ponding adjoint system is the solution of
L%(p,t) G%(t,7) = - 8(t -~ 7T)* (1-34)

with zero initial conditions and G®(t,T) = G{7,t). When N{(p,t) is not a con-
stant, the weighting function W(t,7) of the system is the solution of

Lip,ti Wlit,7) = Mip,t) 8(t -~ 7) (1-35)
with zero initial conditions and can be obtained from G(t,7) by the expression
w(t,7) = M% p,7) Gle,T) (1-36)

The weighting function W%(t,T) of the corresponding adjoint system is the solu-

tion of
L%(p,t) W(¢t,7) = - M%(p,t) 8(t - 7T) (1-37)

with zero initial conditions and W, (t,7) = W(7,t). As a function of 7,

W(t,7) satisfies the equation,

Rip,7) Wle,7) = Qlp,7) 3t - 1) (1-38)
where n
[4
R(P:T) = Z ri(T) d_'
i=0 drt (1-39)
dJ
(p,7) = 55 A1) —
Qlp &, q; Iy

]
The superscript o denotes the sdjoint differential operastor.
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the coefficients r (7) and bj(r) being determined from the coefficients a,(7)
and bj(T) algebraically., Now WK(t,7) also is the solution of

Lip,t) we,7) = 0 (1-40)

with the initial conditions

B‘W(t,'r)/at" = 0 ; 1=0, ,0., n-n=2 (1-41)
tl T
n
-j=1 ~j=1 Z: k- k (h=g)
MW, ) e | = 1/a,(7) (-1)%1 ) pir )
ty T A= j J
n-j-2 n=j=r=t
" Wie,T) s [i+8 (s) i
B r-n;-l ot” LT S=0 (-1) ( J ) as*j”'“ (T)] ’
j = 0. vee, M,

Again, W(t,7) is also the solution of
Rip,7) W(t,T) = 0 (1-42)

with the initial (final!) conditions

ne
dIwie, 1) ord = Z’ * G(e,7)
/! IT Tt kuna " rre X
L]
« L (’5 + f) bg M), j = neml, eu, -1 (1-43)
Lon-j *
£>0
where
mek=~1 2
v Glt,7)
A"tk Gle,T)/arnh = 1/a,(t) ——te
n
L (-1)n-i- (‘ * ") a M) s k= 0, wel, m, (1-44)
i={- £
>0

Moreover, ¥(t,7) can be expressed in the form
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n

e, 7r) = Z gilt) Bi(r) ;6> T (1-45)

t=1

0 it < T

where the g;(t) and B,(7) are sets of basis functions for L(p,t) and R(p,T)

respectively.

Assuming {Y(t)} is a white noise process applied to the syatem at time t,
and that the system is at rest at t,, the covariance function F(t|,tz) of the
output process {X(t)} can be expressed in the form

ts

f Wie ,7) Wlit,,7) dr Pty >,
¥o
Fle,,t,) = (1-46)
ty
f Wie,,7) W, 1) d7 Pty <t
to

Applying the operator L{p,t,) to (1-46) yields

(1-47)

n
o
-
v
-
~

Lip,t,) I'le,,¢,)

Lip,t,) Tle,,¢,) Mip,t,) Wit,,¢t,) Pty <ty (1-48)

Further, I"(t ,t,) has 2n-28~2 continuous partial derivatives with respect to ¢,
and t, and for k > 2n-2a-1

MM(e,,¢,)

| (e, ¢,) |
rh“z"z) = —-——r— t. 1 ¢ ...———r—— t
it 1 2 at,

‘ P
""'i' i {ia'f"(tz,t,) ) [a*""m,,m] }
= iepeg-| {-”-.-| c a"‘c a‘|i-»€ at'h-‘-' At tl t| [} '2
(1-49)
Also, from (1-47) and (1-49), or from (1-45), it follows that
n
Z q.lty) pylt,) Dty >t
Mty =4 (1-50)
n
Z: g lt,) pyle)) Pty <ty
(L

where the g (t,) are a set of basis functions for L{p,t;) and the pi(t) are a

set of particular solutions of (1-48).
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The firat method suggested by Batkov for solving the shaping filter pro-
blem is based on (1-48). Given the q,(t,), the a,(t,) and G(t,T) are easily
computed algebraically (see Chapter 2). Knowing L(p,t,) and Gl(t,,t,) and using
(1-36), (1-48) becomes

Lip,t,) Tle,,t,) = Mip,t,) M3(p,t,) Glt,,t,); ¢, <t, (1-51)

The remaining step is to find the product operator M(p,t,) M%(p,t,) from (1-51)
and then decompose it into its adjoint factors. As Batkov points out, this
decomposition is difficult if M(p,t) contains derivative operators, but is simple
if it is just a time-varying scale factor. Note the similarity of factoring the
product M(p,t,) M*(p,t,) here and the factoring of A;(p,t) in Darlington's work.

These are, in essence, the same problem,

The second method described by Batkov, i.e., the algebraic method, is

based on (1-49) rewritten in the form
j=1 ‘

j a (t) ‘
wie,T) _ L {rj+n-n(t:t) - z [ Z (t)X

] - b.(t) i=n-n~1 Rzn-a-1"4

e, 7)

x.t) ¥ (J;)—yi_ X

e, r) @bt asenmamimyea)
a‘T& dt ‘_,t ( ‘atj‘"l"l“'l

gi=t dalt)
-t 5, T¢) ret ; J = n-m=l, ¢« ¢« ., n=1 (1-52)

From (1-52), relationships between the partial derivatives of W(t,7) with respect
to t and 7 for t = T can be found recursively and expressing them in terms of the
known a,(t) and unknown bg(t) lead successively to m-equations in the bglt) and

their derivatives. Batkov claims that b,_,(t) enters the equation obtained from
(1-52) for j = n-m+k~1 algebraically in terms of b,(t), « « o, bgop, (t) and their

derivatives., Now, in particular,

bolt) = % a,,(t)f(-—l)""" RN (1-53)

liowever, as will be seen later, b,_,(t) does not appear in (1-52) for j=n-a and
both b (t) and b:l{(t) and also b,_,(t) appear in (1-52) for j=n-mtl, etc.,
for j=n-m+l, . . ., n-1. llence, the claimed recursive algebraic method for
finding the b,_,(t) from (1-52), and thereby solving the shaping filter problem
algebraically, fails (except, of course, where bj(t) = 0 for ) # 0).

The third method, described by Batkov in an appendix to his paper, will
not be summarized at this point because of the difficulty of solving the Fredholm
integral equation for the resolvent kernel and because of his restrictive assump-

tions as noted in the following remarks.
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Before proceeding, it should be noted that Batkov assumed that the
system started from rest at t, where T = (to,m) and, what is even more
important, he also assumed that I'(t,,t,) is the covariance function of a
process generated from a white noise process by a physically realizable
linear system characterized by a finite-order linear differential equation
of the form (1-31) for t 2 t,.

1.2.4 Sumsmary of the work of Leonov

As noted in the chronological sketch, Leonov [12] has obtained a rather
nice mathematical solution to the shaping filter problem, and also to the cor-
responding inverse shaping filter problem, in terms of expansions in orthogonal
functions, This work is summarized here and the details can, of course, be

found in Leonov’s paper.

Leonov formulates the shaping filter problem as followa. Given a white
noise process {Y(t)}* where - ® < t < @ [i.e., Ty = (- ®,@)] and a nonstationary
process {X(t)} where 0 < ¢t < T [i.e., T, = (0,T)], it is required to show that'
the random function [a sample function of {X(t)}]) X(t) can, under certain con-

ditions, be represented in the form
X(t) = Ay Y(e) (1-54)

where the (linear) operator Ay is defined if the function X(t) is given.** The
corresponding inverse problem is that of representing Y(t) in the form

Y(e) = Ap' x(e) (1-55)

where A}' is the operator inverse to A;. Leonov shows that this can be done

by explicitly constructing a suitable Ay and a suitable A;' as follows.

As is well known [16]) a random function Z(t), T; = (a,b), can be repre-

sented as a series (canonical expansion)

@
ZUt) = ), B, z,(t)ees (1-56)
i=0

S ————— ————

.lt is always assumed that £ 7(t) ® 0 for all wAite noise processes considered herein.
"Pu;.chcv [16,17) calls (1-54) the integral canomical representation of I(t).

***The 2,(t) are not necesserily orthogonal and ~@ €a<p<Lo,
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where the B, are random variables which satisfy the conditions

and the z,(t) are some regular (nonrandom) functions. 1In order that the series
in (1-56) converge in the mean to Z(t), it is necessary and sufficient that the

series
[+ o)
Cyley,t,) = 2' Dy 2,(t,) z,(t,) (1-58)

converge to r}(t|,t2) in the usual sense. The definition of convergence in the

mean is, of course, only meaningful for random functions with finite variances.

Now to solve the problem, it is necessary to represent Y(t) by a series of
the form in (1-56). However, since Y(t) does not have a finite variance, con-
vergence in the mean cannot be used and a new concept of convergence must be intro-
duced. Leonov introduces the concept of weak convergence in the mean.* A sequence
of random functions U,(t) is said to converge weakly in the mean to the random
function U(t) if the integral

!
a (1) = f R(e)U(t) de (1-59)
o

has a limit in the mean square sense as n — ® for any sufficiently smooth random
function R(t); i.e., for any R(t) which has finite variance, is continuous in

the mean, has the necessary number of continuous stochastic derivatives, and whose
covariance function ['(t,,t,) satisfies the inequality f_: r)F(:,:) dt <o, With
this definition of convergence, Leonov shows that Y(t) can be represented in the

form
0
Yie) = )¢,y (1) (1-60)
i=1
where E C¢Cj = Sij and the y,(t) are any complete (in L,) set of orthonormal
functions over (- w,®) and where the series in (1-60) converges weakly in the

mean to the white noise random function Y(t),

To solve the basic problem is now fairly easy. The C; in (1-60) are de-

fined as follows

C. = . (1-61)
! ,;iai

*This is clearly analogous to the ordinary concept of weak convergence in Hilbert space [18).
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where the random variables are the coefficients in the series expansion of X(t)

[+ o}
Xe) = ‘E Ve X, (1) (1-62)
=1

and D, = E V‘z. The linear operator A, is then defined as

ApYie) = [ We,r) rir) ar (1-63)
-
where
®
Welt,7) = ‘Z JB, X (2) y (1) (1-64)
=1
Then from (1-63) and (1-64)
@® ®
arrte) = J o wgen vm ar = L v, xte) = xio) (1-65)
- ® i=

where the integral in (1-63) is taken in the mean.

The functions Wy(t,7) and Y(7) in (1-65) can be defined in infinitely
many ways by using any other representation of X(t) in the form (1-62) as is
shown to be possible in [16]. However, Leonov shows that if Y(t) is so chosen
that (1-65) holds, then there is one and only one Wylt,7); i e., Wx(t,T) is unique,

Finally, the inverse problem is easily solved as follows. Let A;' be
defined as

o
A Xt = f oW, X(r) dr (1-66)
- o
where
@®
PAITRIN) yi{t) a l7)/V/D, (1-67)
i=1

and the a,(7) are chosen so that
)4
Jagm xpmar < 5, (1-68)
0
As before, the y (t) are any complete (in L,) set of orthonormal functions over
{~o,w), Then from (1-60), (1-66), (1-67), and (1-68) it follows that

[ 4 ©

14
Y(e) = f wy'(e,7) X(7) dr = Z =4 y () (1-69)
0 of [X Y] VD‘ ¢



The series in (1-69) converges weakly in the mean to the white noise random
function Y(t) as noted above,

This completes the summary of Leonov’'s solution to the shaping filter
problem and the corresponding inverse shaping filter problem, the remainder
of his paper being devoted to mathematical niceties and applications.* It
is clear that the weighting function for the shaping filter can be written
down immediately in series form once the X;(t) and D; for the canonical ex-
pansion of X(t) are known. In his book [16] Pugachev presents several tech-
niques for finding the first n-terms of expansions of the form (1-62) rather
simply and which avoid having to determine the eigenvalues and eigenfunctions
of an integral equation as required in the well known Karhunen-Loeve Expansion

Theorem. However, it should be noted that Leonov's solution is always obtained

in the form of an infinite series and, further, there is no guarantee of

physical realizability of the shaping filter or its inverse,

.Applic-tionu will be discussed in later sections.



CHAPTER 2

PROPERTIES OF WEIGHTING FUNCTIONS
FOR A CLASS OF LINEAR SYSTEMS

2,1 INTRODUCTION

Because of their importance in the shaping filter as evidenced by
Chapter 1 and those to follow, for purposes of detailed review and for later
use as available reference material, this chapter is devoted to the investi-
gation of the properties of weighting functions (Green’s functions) for sys-
tems which can be described by finite-order ordinary linear differential

equations of the form

n n=1
Loae e = Noste) ¥y 5 e >0 (2-1)
i=0 j=o

where, for t > 0, a,(t) # 0 and the a,;(t) and bj(t) are continuous. Since
weighting functions and their derivativea are, in general, discontinuous at
t # 7, this investigation divides naturally into two parts: properties in

the regions where t £ 7, and properties of the discontinuities at t = T,
2.2 PROPERTIES IN THE REGIONS WHERE t [ 7

It is well known that the general solution of (2-1) can be written in
the form [19, p.257]

¢ n-1
Ko = farcten X ylihn 4
0 j=o

n=1
+ 2 xlido) g 00 (2-2)

i=0

where the g;(t) are n-independent solutions of (2-3)

2 a, XYy = 0 (2-3)
i=0
for which
q‘(j)(t)l = 8‘,’; l,] = 0. e o s, N -'l (2")
tio

and G(t,7) is the weighting function (Green's function) for (2-3). If G(¢,7)
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and the bj(T) have a sufficient number of derivatives with respect to 7, then
through integration by parts, [20, p.189] (2-2) can be brought into the form

t n-1
Xe) = [ ar Wem) g o+ L x4 0)g () (2-5)

0 {=0

where

! 3k, (7) Gle,7)

T t, T
Wie,7) = Z (-1)J - (2-6)

j-o 31'.’

Here, W(t,7) is the weighting function for (2-1). Its properties are investigated
below,

Since W(t,7) is defined in terms of G(t,7) as shown in (2-6), any investi-
gation of the properties of W(¢,7) must begin with an investigation of the pro-
perties of G(t,7). By definition [19, p.254], the weighting function for (2-3)
is that solution G(¢,7) of (2-3) which satisfies the condition

Gle,7) = 0 ; t<n7

lim 3%Gle,7) L

“TT— =0 ; =0, ..., n-2 (2-7)
lim 3*'Gl¢,7) - 1

tIT  gnt T a,lT)

Since G(t,7T) is a solution of (2-3) for t > 7, in this region it can, according
to the theory of linear differential equations, be expressed as a linear combina-
tion of the ¢,(t).* Hence
n=1
G(t,7) = ‘Zo ay q,t) Lt (2-8)
where the a, are chosen so as to satisfy conditions (2-7). Putting (2-8) into

(2-7) and writing the result in vector-matrix form there results

rqo('r) o oo Gu 7 N rao R o0 ]
. . . = . (2'9)

PAL RN C S IR 9,27 (m)]

_an-lJ _l/an('r)_J

—

.Or any other set of n-linearly independent solutions of (2-3),
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Now the determinant of the matrix in (2-9) is the Wronskian of the qi(t) and
hence does not vanish becauae the q;(t) are a set of linearly independent
solutions of (2-3). Therefore, the inverse of the matrix in (2-9) exists and,

hence, the a;, are given by

i °‘o_ [ g,l7) o oo GuoylT) T r 0 ]
. = ] hd * (2-10)
oy, | Kk NS IE Y I PVZWES

It is seen from (2-10) that the a; depend on T only, which, together with (2-8),
implies that G(t,7) is separable; i.e., that
n=1

28 (1) q.(¢) ;o ot
Glit,r) = (2-11)

Under the assumptions made up to now regarding the a;(t), it follows from the
existence theorem for solutions of a differential equation that the q,(t) have
at least n-continuous derivatives for t > 0, and, thus, from (2-10) it follows
the a,(7) are at least continuous for 7 > 0. More generally, if the a‘(‘)(t)
are continuous t > 0, then the a‘(T) have at least n-continuous derivatives

for 7 > 0. To show this, it is convenient to introduce the adjoint differential

equation corresponding to (2-3); namely,

n
‘2 (=1)% fa,te) x(e) = o (2-12)
=0

Since the a‘(i)(t) are assumed to be continuous, (2-12) can be rewritten in the

form

n
L octe) x4y = o (2-13)
i=0

where the C,(t) are continuous for t > 0. Now, if H(t,7) is used to denote the

weighting function for (2-13), then {19, p.256]
H{e,7) = Gl7,t) (2-14)

Furthermore, H(t,7) must satisfy (2-13) for all ¢ > 7. Hence, using (2-11),
it is found that
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ne1
Z q,(7) Z C(t)a.(j)(t) = 0 ; t>7T (2-15)
i=0 j=0

Since the g;(7) are linearly independent, (2-15) implies that

Z Cj(t) a.g“(t) = 0 (2-16)
j=0
Thus, the a;(t) are solutions of (2-13) and, hence, have n-continuous deriva-

tives by the existence theorem,

From (2-16), it is easily shown that
n=1

L c;te) a e

ag")(t) = - 20 C Tt) (2-17)

From (2-17), it is easily concluded that, if the C, (h)(t) are continuous [i.e.,
the a; (‘*h)(t) are continuous], then the a, ("‘h)(t) are continuous. Similarly,
from (2-3) it can be concluded that the g, n*2)(¢) are continuous if the “t(hut)

are continuous. This concludes the study of G(t,7).

Substituting (2-11) into (2-6) it is easily seen that W(¢,7) can be
written in the form

n n-1
) g lt) ) (-l)j[bj(f)a‘(r)](j) pot>T
We,7) =4 **° i=o (2-18)
0 Pt <T

The existence of the derivatives in (2-18) will be guaranteed by assuming
continuity of the ai(‘)(t) and bgj)(t) for t > 0, Carrying out the indicated
diiferentiation and m-king the obvious definitions for the BylT), it is found
that W(t,7) can be written in the form

n-1
E g (t)B,(T) ;ot > T
Wie,7) = *°° (2-19)
0 i t <T

Hence, W(t,7) is separable; i.e., can be written as the sum of products of a
function of t only by a function of 7 only. Further, the functions of ¢t are

a set of linearly independent solutions of (2-3)., It is clear that continuity
of the derivatives of the ¢,(t) and B;(7) implies the continuity of the partial
derivatives of W(t,7) at any t,7 except ¢t = 7, Examining the differentiability

properties of the £;(7) it is found that the ﬁ‘(.)(T) are continuous for 7 > 0
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if the at("h)(t) and bj(j*‘)(t) are continuous for ¢t > 0, Incidentally, it
is also clear that W(t,7) formally satisfiea (2-3) except at t = 7,

2.3 PROPERTIES OF THE DISCONTINUITIES OF W{t,7) AND ITS
PARTIAL DERIVATIVES AT t = T

In order to investigate the discontinuities of W(t,7) and its partial
derivatives at t = 7, it will be convenient to replace (2-1) by a particular
set of n first-order equations. If the a,(t) and bj(t) have a sufficient
number of continuous derivatives for t > 0, then (2-1) is equivalent to the

following system of first-order equations (see [20, p.191]).

X(¢) = X, (t) + Fult) yle)
X0 = xte) o+ R )yl
. . . (2’20)
xﬁlz(t) = Xn(t) + Fn-t(t) ylt)
XU = — e, () X(t)eee = agle) X, (6) + Fole) yle)

where the F (t) can be found recursively from the equation

i=-1 i=h
Fole) = b, lt) - ) S eaestt) BN (2-21)
k=1 S=0 -

In (2-21) use has been made of the fact that F (t) = b"(t) = 0 and, hence, all
terms involving F,(t) have been omitted. If W,(t,7) is used to denote the
weighting function corresponding to X;(¢t) in (2-20), then letting y(¢t) = 8(t-7),
(2-20) yields

Wie, ) = W (t,7)

w'(|o°)(:,1): W,(le,7) + F (e) 8(¢ - T)

. . . (2‘22)

wiodie,7) = W (e, 7) 4 Fooylt) 8 (¢ = 1)

it

n

_ Lo

Wﬁ"°)(t.7) Z,

(¢) wile,7) + Fole) 8(e - 7)

i=t

Integrating (2-22) with respect to ¢t from 0 to t and remembering that W, (¢, 7)=0



for t < 7, there results (for 7 > 0)

t t
f do Wlo,r) = f do W, (o,7)
T T
t
W, (e,7) = f do W,lo,7) + F (1) Ult - 7)
. 'r ]
) (2-23)
ft
W._ (t,7) = do W, lo,7) + F,o (1) Ult - 7)
n-1 n ' n-1 (2-24)
t n
W, (t,7) = f do} - Zai_,(o) W,lo,7) |+ F (T)U(t-T)
=}

T
where Ult - 7) is the ordinary unit step function. Making use of (2-22) and
(2-23), the discontinuities of W(t¢,7) and its partial derivatives can be evaluated

fairly easily. In fact from (2-22) it is easily established that

wli,0)(¢,7) = Wyo lt,7) : t>7, i 20, « o o, n-1

n (2'24)
W(n'O)(t,T) = - 23 a‘_‘(t) Wi(taT) rt>T

i=1

1f W("j)(T,T) is defined as shown in (2-25)

. i+
Wi (r,gy = dim 20T We7) (2-25)

ti T 3:‘371

then from (2-23) and (2-24) it is clear that

wli.0) (7 7) = Fioy (1) ; i=0, « 4., n-=1
n (2-26)
W) (s ) = _ O ago (T) FylT)

i=

Also from (2-24) it is clear that

W‘i'j)(t,T) = Wig;j)(tOT) RO | > T , 1= l, « o o, N ~ 1 (2'21)
n

W ile,7) = - Z%-‘(t) W,(;o'j)“.f); t > T
[E2)

By virtue of (2-27), the evaluation of the discontinuities of the ’("1)(Q,T)
at t = 7 reduces to the evaluation of the discontinuities of the léo'th,T) at
t = 7. To find these, use is made of (2-23), Upon performing the indicated

differentiation, it is found that



t !
f do W&?;j)(U.T) - Z [Wﬁ?;”('r,'r)] (§=1=-1)

T A=0

t Flilr) e, i<

t n
W'(‘O:J')(t,'r) = f dcr[- Z a;.,lo) Wi(°'j)(0.'r)]

T imt

W$°'j)(t,'r)

1

(2-28)
j=t n

- Y- () whos k) (gl dm1=a)
roo ‘2_1 Gpe 1

+

Fij)(T) ; t>T

Taking the limit as t ! 7, there results
j=

Wgo,h)(T'T) _ Z [wsgih)(,r',r)] (f"l-“k) + st)(q-) ;1 <n

1]

W,('°'j)(t,'r)

i
o4

]
oM
Q

+ FLi)r) (2-29)

Equations (2-29) can be used to find the values of W$°'“(T,T), and, hence, those
of W“'j)(‘r.‘r), recursively in terms of the F,;(7) and a,(7) and their derivatives.

2.4 A SYNTHESIS PROBLEM
This chapter concludes with the solution of the following synthesis problem;
Given W(t,7) expressed in the form in (2-19), find the a,(t) and bj(t) of its

corresponding differential equation (2-1),

Since the ¢,(¢t) in (2-19) are solutions of (2-3), it is clear that the

following cquations are valid. g

2 a0 qlilier = o
i=0
. . ‘2-30)
"‘ . L]
L ale) glilte) = o
i=0

Hegarding the ¢,(t) as known and the a;(t) as unknown, (2-30) is a set of n-
linear equations in the n + 1 unknowns, a,{t). Since it can be assumed without
loss of generality in (2-1) that a (¢t) = 1, (2-30) can be solved for the remain-

ing unknown a;{t) with the result



ao(t) qo(t) o o o 43-|)(t) 1 -qgn)(‘)
’ = ) X . (2-31)
] I [ S C R sl ] B ]

The existence of the inverse matrix in (2-31) is guaranteed by the fact that the
q;(t) are linearly independent solutions of (2-3). Equation (2-31) provides the
desired relationship for determining the a,(t) from W(t,7). This result is given
as Theorem 6.2 in [21]) for an arbitrary set of n-line rly independent functions
q,(t) providing the q;(t) have n-continuous derivuﬁives on the region of interest.*
Once the a,(t) have been determined, the bj(t) can be found from (2-21) rewritten

in the form

i
bpoylt) = ) ; ("’S") aniekestt) PN (2232)
k=1 =0

where the F, (t) are given directly in terms of the discontinuities of the weight-

ing function and its derivatives with respect to t as in (2-26).

A development similar to that given in Sections 2.2, 2.3, and 2.4 has also

been carried out by Borskii [22].

*Linear independence of the q,(t) is equivalent to the nonvanishing of their Wronskian.



CHAPTER 3

PROPERTIES OF THE COVARIANCE FUNCTIONS OF
A CLASS OF STOCHASTIC PROCESSES

3.1 INTRODUCTION

As is to be expected and as evidenced by Chapter 1, the covariance func-
tions of the class of stochastic proceases, which can be generated by passing
white noise processes through systems characterizable by finite-order ordinary
linear differential equations of the type given in (2-1) with random initial
conditions, have many properties in common in addition to that of being non-
negative-definite [23,p.466]. This chapter is devoted to the development of
some of the more interesting and useful among these additional properties both

for the purpose of detailed review and later use.
3.2 SOME GENERAL PROPERTIES

Let it be assumed that a given system can be characterized by a differen-
tial equation of the form given in (2-1) where a,(t) = 1 and the a“"(t) and
bj(f’(t) are continuous for t > 0. Then the weighting function, W(t,T), for the
systems exists in the form (2-19). Now, letting {y(t)} be a stochastic proceas
with covariance function ryy(:,,:z) and X“)(O), random variables with covariances
F‘j, the covariance function, [yy(t,,t,), of the stochastic process {X(t)} can
be determined from ryy(tl'tz) and F‘j according to the relation [20,p.227).°

‘£, t,
Fpplt,t,) = _[d'r'af dT Wi, 7)) Wiy, 70T, (7,,7,)
-1 n=1
+ 'Z L Tyyaele) qufe,) 5 ¢, 20, 6,20 (3-1)
i=0 j=0
When y(t) is a white noise process, F,,(:,,:z) =8(t, - t,) and (3-1) becones

[+,

=1 43!
f dr W(e,,7) W(t,, 7) + t‘ 2 Fepoaglty) qule,)

o i=0 f=0
Fepltyt,) =ﬁ t t,>t, >0
t =1 n=1
dr Wit ,,7) Wit,, 7) + ’2 Z r‘j q.(t,) q (¢t,);
\° is0 j=o0

t,>t, 20 (3-2)

*Here it has been sssumed that l[l(‘)(o)y(t)] ®0ind endt >0,



If the expression for W(t,7) given in (2-19) is substituted into (3-2) and the
coefficients of the q;(t) are collected, (3-2) can be brought into the form

.o noi t, T
42-:0 g;(t,) jZ-;o g lt,) fo drB(T)B(T) + Feg s
4 t, >t, >0 B
Cpplty, t,) = n=1 Ej‘ ¢, - (3-3)
= a;tp) L gyle)) fo drB, (1B 1)+ Ty |

t,>t, 20

It will be convenient to denote the terms in the square brackets in (3-3) by

the symbols p,(t), in which case (3-3) becomes
([ n=1

gilt,) pyle,) ;

t, >t, 20
t=0 ! 2=

(3-4)

n~-t

- gjle,) pyley) ;

Cerlty, t) = ﬁ

. t,>t, 20

J

From (3-4) two im;ortant general properties of the clasas of covariance functions
under consideration are obvious, First, they are separable in the sense used in
the preceding section. Second, for t,>t,, the functions of t,, i.e.,, the g (¢t,),
In addition, if the
a{‘*k")(t) and b;j*k")(t) are continuous for t > 0, then 'y, (t,,t,) has con-
This is
easily established from the differentiability properties of the q;(t) and ﬁj(T)

are solutions of the homogeneous differential equation (2-3),
tinuous partial derivatives of order k in regions t,, t, > 0; t, # t,e
discussed in Section 2.2,

3.3 DISCONTINUITY PROPERTIES

The discontinuities of the partial derivatives of 'y, (¢t ,,t,) at t, = ¢,

can be evaluated in terms
W(t,7) at t = 7 by making
partially with respect to

exist) there results

of the discontinuities of the partial derivatives of
use of (3-2).

t, (assuming, of course, that the requisite derivatives

In fact, upon differentiating (3-2)
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ta
7 a1 0 e, 7 We,m) ¥
O peq on-a
+ 2: 2: Fyy gi" M e,) qqley) 5ty > 8,
i=0 j=0
FebteoMe ey =ﬁ ‘ (3-5)
[ amwt 0 (e, 7) Wle,m) + Wle ) Wley, b))+
0
n-1 n-1i
b Y, Y Pyl e ggley) 5oty >ty
\ t=0 j=0
Defining the discontinuities J‘j(tz) as shown in (3-6)
Iim lim
J, Lt = Ctead(e,, - rots. e, -
ALY e i, T (t,,t,) T 2 (e,,t,) (3-6)
it follows from (3-5) that
Jyolty) = Wiliyt,) (3-7)
In general
( ‘,
f drWis: 00 (e 1) W0 (e, T) 4
°

i=1
+ Z Fid W40, t,) ’U"c":o)(tz,h)] +

——

&"’3‘2{
n-1 n=-i
+ 2: 2: Fh£ q{‘)(t|) Q£(j)(tz) oty >t
k=0 g=0
rl}i'j)('|"z) =ﬁ t, (3-8)
f drwit:0) (¢, 7) WH O (e, 7) +
04y .
a=o Ot *
n-1 n=1

kg aft ) g ey ity > 0

and hence k

-1 3(,
Jy,jlty) ={ — 00, ) '(1.{-"0’(‘1"2)]} t 1t

4*0 3:}
i

-1

A
'{.z_:o —:;— (wii=A=1.00 (¢, ¢t,) v‘1'°’(t,,t,)]}t' 1t, (3-9)
'



A
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It should be noted that no initial condition terms appear in (3-7) or (3-.9);
i.e., the discontinuities of the FX}"j’(t',tz) depend only on the W‘h'j)(t,T).
If the W!*J)(¢,7) appearing in (3-9) are expreased in terms of the ai“’(t)

and the Fj(i)(t) as developed in Section 2,3, then (3-9) becomes a second degree
equation in the Fj(t) and their derivatives, This form for the Ji.i('z) will be

examined in more detail in a later section.
3.4 A FINAL IDENTITY

Equations (3-10) can be considered as a set of simultaneous nonlinear

integral equations in the B,{7) if the p (¢t), qj(t), and rij are assumed

n=-1 t ne|
p;lt) = jz:o g;lte) { drBTIBiT) + j_z(:) Fyjogste) o
1= 0. o o o , R - 1 (3-10)

known, These integral equations can be converted into a set of simultaneous
second degree differential equations in the S;(t) which are independent of the
F‘j. To see this, the operator ;g: a,lt) d*/dt* is applied to both sides of
(3-10), [assuming, of course, the requisite differential properties for the
p;(t) and qj(t)] with the result

i: n-1 n N t
(k) - d .
L oayfe) p(Mie) - jZ:o Loyt 42 ot { drp Ty T) + Ty

i =0, « o« ,n-1 (3-11)
Making use of the fact that the qj(t) satisfy (2-3) it is clear that the terms
in (3-11) involving the rij vanish identically in t for all i,j. Expansion of
the remaining terms in (3-11) according to the rule for differentiation of pro-

ducts gives

n 1;1 7 %
Yoage e = L L L (,’E) aylt) B2 (e) x
k=0 j=0 k=0 =0

-~

](u-l),

x

( f dr pl1) /Jj(‘r)
0
1 =0, « v « , -1 (3-12)

Now (3-12) can be rewritten in the form
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n n=1 n k=t
2 a(t) pi¥(e) = 2 D) (") a,(t) qj""(t)x
k=0 j=o k=0 A4=0 4
n=1 n
x BB M LYY e g0 x
J=0 A=0
t
x [ farBmiByr)} s i=0, 0., n-1  (3-13)
0

Again using the fact that the qj(t) are solutions of (2-3), it is clear that
the second term on the right-hand side of (3-13) vanishes identically in ¢

for every value of i and j. Further expansion of the terms [ﬁ‘(t)ﬂj(t)](*'t-')
in (3-13) yields

" n§:| i hz—l kz-'{r'l
(h) - TARLED!
L aye) pMe) - Lo Lol {) ¢ ) x

x

aple) qfP 0B (B-I= 114
i=o.o.o.n~o£;‘o (3“1‘)
The above identities form the desired set of second degree differential equa-
tions in the B;(t). They are obviously equivalent to (3-10) providing a proper
set of initial conditions for the ﬂ‘(t) and their derivatives is given.
3.5 A DISCUSSION OF BATKOV'S ERROR
As noted in Chapter 1, the second method described by Batkov in his
paper only works as an algebraic method for a much more restricted class of co-
variance functions than claimed by Batkov. Using the results of Sections 2.3
and 3.3, this is easily demonstrated as follows.
Letting n > 3 and examining J, ,(t,), it is found from (3-9) that
Jo, 1(t) = Wiley,t,) (3-15)
which, by (2-26) and (2-21) yields

Jo,1(ty) = FH(ey) = b5 ,(t,) (3-16)

Similarly, from (3-9)
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Jo,2lty) = Wlayut,) WO (e e,) + WO ee e)) Wley,t,)
+ Wley, t,) Wie,, e 040 (3-17)

which by (2-26), (2-29), and (2-21) becomes

Jo, ol t5) Fole,) Foley) + <Folt,) + FUVVe,) Fi(e,) 4

+ Foley) FYDe,) = oF (1) F{''(¢t,)

2b,_,(¢,) b A0 0(e,) (3-18)

Note that Jo,a(tz) does not depend on b,_,(t,) which is contrary to what Batkov
claims [Batkov’s Cplt,,t,) is equal to Jo,h(tz)]’ Further, from (3-9)

Jo,slty) = Wity t,) WiBOV(e, e} 4 Wi (e, 0,) WL (e,,e,)
+ Wle,,e,) WELO (g e ) U)o w020 (g e ) W, t,)
+ 2000 e ) W, e ) ) W, e, ) Wty e, ) (3-19)
which by (2-26) and (2-29)
Jo,3lta) = Flty) Falty) + <F,le,) + F,1"(e,) F, (1)
+ Fole,) FEVe, ) 4 2R (e ,) 4+ FEB)(e,)
v Fale,) File,) + 2 <Flt,) + F{V(e,) FEV (e,
+ F lt,) Fi2)(e,)

= 2F,(t,) Fyole,) = F2(t,) - F{'M¢t,) F,lt,)

Fi'e,) Fole,) « FIVM 8,02 & Fole,) Fi3(e,) (3-20)

Making use of (2-21), it is a function of b, _,(t,), b, _,(t,) and its firat
derivative, and b, _,(t,) and its first and second derivatives. Proceeding,
it can be shown that a similar situation obtains for the higher order jumps,
J"j(tz). This clearly demonstrates Batkov's error and shows that from the
jumps one can obtain at best s set of simultaneous, nonhomogeneous, nonlinear
differential equations in the F;(t,) or b,;(t,)* An independent set can be
obtained from the jumps J‘,‘,,(tz) where t =0, . ., . , n - 1 for example,
However, because of their complexity and, hence, lack of utility, they are



[#9]
wn

neither derived nor considered herein. Of course, when b‘(tz) =0 for 0 ¢ &
<n -1, then J¢'j(t2) =0 for i,j <n -1 and Jn_|‘ alty) = W("-"O)(tz'tz)z
bg(tz) and Batkov's algebraic method works. However, the first method

described by Batkov also works for this special case, Note that it has been
assumed in the above that I'(t,,t,) is the covariance function of a process

obtained from a white noise process by the physically realizable characterized
th

by an n*" order differential equation of the form given in (2-1).



CHAPTER 4
EXACT SOLUTION OF THE SIHAPING FILTER PROBLEM FOR SOME SPECIAL CASES

4.1 INTRODUCTION

When the function I'(t,,t,) introduced in Section 1.1 has certain special
properties, the shaping filter problem can be resolved by fairly elementary
methods. These special cases are studied in this chapter and the methods of
solution are presented, It is assumed that T = (0, T) and that r(t‘,tz) is

separable and ia given in its separable form,
4.2 THE “SIMPLEST" CASE

Probably the simplest case is where I'(t,,t,) is of the form

n on

Fle,,t,) = Z Z Figagley) qqle,) (4-1)

TYRTY

where it can be assumed without losa of generality that the ¢ ,(t) are linearly
independent on T. In this case a set of necessary and sufficient conditions
that ['(t,,¢,) be a covariance function is that the matrix [P‘j] be symmetric
and nonnegative-definite, To prove the sufficiency of the conditiona it is
observed that if [r,j] is symmetric, then so is ['(¢t,,t,). Further, considering
the expression for arbitrary z,

" L} ] L ]
g_:,' {Z” F(t;,té) 2, %, 205 l"“ g' {Z.:'q‘(t;,) qj(t‘é) 2y zp

'
g
1

g
(|

Fygy (4-2)
t=1 jmy 4747y

where y; = i g;(t',) z,, it follows that I'(t ,¢t,) is nonnegative-definite if
k=

[rij] is. This establishes the sufficiency. On the other hand, symmetiry of
I"t,,t,) clearly implies symmetry of [r‘j]. Further, since the ¢ (t) are linearly
independent on T, there exiast at least n-values of t € T, say t,, such that th: matrix
[q;(t})] is nonsingular, for if not, the g,(t) would be linearly dependent on T.
For arbitrary y,, let 2, be defined by

(] = (g0 " ly] (4-3)

where [z]7 = (z, .« o o zn] and [y]’ = [y, « o o y"]. Hence, the expression



n

t=2)

n n n
C..oy.y; = 2: Z: ity , tpi 2z, 25 20 (4-4)
o T ket pui * o

holds for arbitrary y,;, the inequality following the nonnegative-definiteness of

Ilty,t,). This establishes the necessity of the conditions.

Now given that [rij] is symmetric and nonnegative-definite, the process

whose sample functions are of the form

n
Xtt) = t_; A, q,lt) (4-5)
where the A, are random variables and E AjA; = rij-has I'(t,,t,) for its covariance
function. If the g (t) have continuous nth order derivatives on T and if their
Wronskian does not vanish on T, then the process {X{t)} can be generated by a

physically realizable system characterized by (2-3) with random initial condi-

tions and no input; i.e., as the transient response. The a,(t) in (2-3) can be

found by (2-31) and the covariances of the initial conditions are given by
[F;j = [W]’[th][W] (4-6)

where F’ij = E[X(i)(O) x'3)(0)] and (W] is the matrix whose i,j element is

9:0i)(0). Of course {X(t)} can always be generated by the physically realiz-
able system composed of n-function generators, n-multipliers with random magni-
tudes A;, and a summing amplifier. This resolves the shaping filter problem

for this case.

While it is not directly related to the shaping filter problem, it is
interesting and worthwhile to consider the predictability of processes whose
covariance functions are of the form given in (4-1). In view of (4-5), it is
not surprising to find that such a process is essentially predictable exactly.
In fact, if the sample functions of the process are indeed those given in (4-5),
then being able to predict the future values of a sample function X(t) is just
a matter of being able to find the values of the A; for the particular sample
function X(t) of interest in terms of the observed values of X(t), Now if the
qg;{t) are linearly independent on some interval observation [ CT, then, as
before, there exist at least n-values of t € T, say t; , such that the matrix
[qj(t;)] is nonsingular, llence, given the observed values of X(t) at the

'

points t the A, can be determined exactly by the expression

(9
4, ] (g, (e Ve g ] = [xcen
. . . . . (4-7)
A, g lth) ooe qulel) X(e))
L - - - L




A
and thus the predicted value X(t) given by

A -1
X(t) = [q,(t) +++ q(t)) ['q,(:;)... q,(t)) X(t!)

l_qn(t;)... 9,0 t,) X(t,) (4-8)

equals Q(t) for all t € T. Since this will be true for every sample function
of the process, it follows that X(t) = Q(t) with probability 1 for all t € T,
Even if the sample functions of the process are not known to be of the form
given in (4-5), as lxng as the covariance function'of the process is the same,
the predicted value X(t) still equals X(t) with probability 1 for all t € T.
To prove this, it is sufficient to show that E|X(t) - }(tH2 = 0. Now

A . A
E|X(t) - X(¢)|2 = [(t,t) - 26 K(¢)X(¢t) + E X2(¢) (4-9)
A
Computing E X(t) X(t) it is found that

A
E Xxt(e) X(e) = [q,(¢) <=+ q,(1)] Tt Pleg, t)

qj(ta) . (4-10)
Meg, t)
and from (4-1) it follows that

Fie], t) q,(¢t)

* = [qj(ti)][rjk]

(4-11)
Cleg, ¢) 9,
Substituting (4-11) into (4-10) and making use of (4-1), it follows xhat

E X(t) X(t) = T[(t, t). Similarly, it is also easily shown that E X2(¢t) =
(¢, t) and hence E|X(t) - X{t)|2 = 0 for all ¢t € T. Thus it has been shown
that if the ¢;(t) are linearly independent on an observation interval I, then
the process is predictable with probability 1 for all t € T by a linear com-
bination of n-observations of X(t) on the interval I. Since the g ,(t) are
linearly independent on T, this clearly implies that, if a process has a cc-
variance function of the form given in (4-1), then its sample functions have

the representation (4-5) where equality holds with probability 1,

On the other hand, suppose that the ¢ (t) are linearly dependent on ¢n
observation interval I. Then the sample functions of the process have the

representation
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r

X(e) = ) B, qlt) , r<n (4-12)

i=

for t € I where the q,(t)(: = 1,..,,r) are linearly independent on I and the
B, are linear combinations of the A;; the equality in (4-12) holding with
probability 1. Now, suppose the process is predictable with probability 1 for
all t € T in terms of a linear combination of values of X(t) for t € I, Then
the representation (4-12) holds for all t € T. But, providing [rij] is
positive-definite, this contradicts the assumption of linear independence of
the ¢,(t)(i=1,...,n) on T. This result is the converse of that of the preceding
paragraph for the case where [I_";j] is positive-definite, Since, if [F‘j] is not positive-
definite, the number of terms in its covariance function can be reduced to the point where
it is by defining new q,(t) as linear combinations of the original q;(t), the assumption

of nonnegative-definiteness of [rij] entails no loss of generality,

An interesting generalization of the above is obtained by letting n=®,
Then I'(t,, t,) is of the form

@ @
Ple,t) = ) ,E, Coj oai (8,) gy (1) (4-13)
‘ =

i=

Of course, in order for (4-13) to be meaningful, the mode of convergence of the
double series must be specified., A natural mode of convergence is pointwise

on T x T and this shall be the mode specified. Again, the q,(t) are, without
loss of generality, assumed to be independent on T, Using the argument used
before and letting n=o, it is easily shown that if the matrix [F‘j] i, j =1,
«es, m is symmetric and nonnegative-definite for all m, then I'(t ,t,) is a
covariance function. Now consider the processes {X,(t)} whose sample functions

are of the form

n
X060 = 2 A, q (1) (4-14)
t=t
where the A; are random variables satisfying E 4, Aj = r‘j. Now, since for
all ¢
n n > 0
EIN(0-x00)]2 = L L Ty qte) qe) 40 —o (4-15)
izmel jEmey
the convergence to zero in (4-15) being a consequence of the convergence of
(4-13), the X, (t) converge in the mean to some limit sample functions X(t) of
a limit process {X(t)}. Further, it follows that the covariance function of
{X(t)} exists and is that given in (4-13). Formally this can be stated as

]..0 L] -
X(e) = ,,l: Xole) = L A agto) (4-16)
i=1
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This resolves the shaping filter problem for this generalized case,

Turning now to consideration of the predictability of processes whose co-
variance functions are of the form given in (4-13), a result analogous to that
given above for n < ® is fairly easily established providing certain additional
mild requirements are satisfied on the observation interval I. To aee how to
proceed, suppose for the moment that the sample functions of the process are of
the form given in (4-16). Then formally, if there existed a set of functions
fi(t) such that [, f,(t) g;(t) dt = 8;,, the A; could be found by multiplying
both sides of (4-16) by the f,(t) respectively and integrating over the obser-
vation interval I. Once the A; have been determined, the predictability follows
immediately. Now the additional requirements mentioned above are just those
needed to rigorously justify this procedure in general [that is, even when it is
not known a priori that the sample functions of the process are of the form given

in (4-16)). This motivation leads formally to the consideration of
n

A
i=

as a predicted value of X(t) where hopefully the error of prediction goes to

zero as n = w .

Specifically, assume that the g¢,(t) are linearly independent on I in the

sense that for all finite n there exists no set of constants a; not all zero

n

such that i§1 a; gq;(t) = 0 almost everywhere on I* and that fI qf(t)dt < w

for all i, Then as shown in Appendix 1 there exists a set of functions fi(t)
defined on I such that [; f2(t) dt < @ for all i and II filt) qj(t) dt = 3¢j.

Finally, assume that one of the following statements is true: Either (i)

n ®
= 2 I, q,(t,) q,lt,)| <8 (t,) almost everywhere on I for all n and all
jwrje tj 1t ! jl2 -~ 1

n
t,el and | = rij qi(t|)| < 8,t,) almost everywhere on I for all n, j where
i=

S,(t,) and S,{t,) are integrable on 1, or (ii) f,Fz(t,,:z) dt, < @ and the

n [}

series 'Z|.Z'rij g lt)) qj(lz) converges weakly to ['(t,,t,) on I for all t,el
Ll Ay n o n

and jIXIrz(fz"l) dt, dt, < w and the series ‘Eljf'rij g.le,) qj(tz) converges

weakly to (¢t ,,¢t,) on I x I.** Under these assumptions consider the expresaion

A A A
E[Xte) « X (e)]2 = Tle,¢) - 2EX,(¢) X(e) + E X2(t) (4-18)

*Note that this definition of linear independence differs slightly from the classical defini-
tion used above for the case vhere 1 < o
**Note that convergence in the mean 1mplies weak convergence,[la, p.l75].
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Computing E X, (t) X(t) there results

n
EX,(t) X(t) = Z g lt) [1 £ (107, ¢) dr
5 s
- gt E, ;2. Pag 95180 J1 13470 agtm) a7
now
= ‘; y; Fyjoa(e) qj(t)_u-?:l"(t,t) (4-19)

the interchange of order of summation and integration being justified by the
assumption of bounded convergence or weak convergence of the relevant series.

Similarly, computing E X:(t) there results

n
A
EX:(:) = i Z g lt) qj(t)fI d‘r,fI. dr, f,l7,) fj('rz)l"('rhrz)

isy {=
' [ [ ]
= 2' j2l g;t) q;(t) fI dr, z.:‘ {2| r.£f¢(71) q4(7y)

n n

= r.;q, () T -2
‘; j;‘ iy 9itt) qJ(t)n . Fle,t) (4-20)
Hence,
A
E|X(¢) - X (¢)]27220, all t €T (4-21)

which proves that under the above mild assumptions, processes whose covariance
functions are of the form given in (4-13) are predictable in the mean. As before,
linear independence of the q,(t) is of crucial importance; it being used in the
proof of the existence of f,(t) which satisfy fI file) qj(t) dt = S‘j.

The above result includes as a special case, two classes of processes which
are known to be predictable in the mean for any nondegenerate observation inter-
val ICT; namely, those with analytic covariance functions and those stationary
processes whose spectral distribution functions are step functions. Finally, it
is interesting to note that if one has expanded what Wiener calls an innovation
process; e.g., a stationary process with absolutely continuous spectral distribu-
tion function, in an infinite seriea over an interval T by the Karhunen-Loeve
expansion theorem or by any other method leading to reasonably convergent series
for (¢ ,t,), then while the ¢ ;(t) in the expansion are linearly independent on
T, they cannot be linearly independent on any proper subinterval of T. If they
were, the process would be predictable in the mean in terms of values on the sub-
interval which contradicts the assumption that the process is an innovation pro-

cess.



4.3 THE “ALMOST STATIONARY" CASE

Another case for which the shaping filter problem can be resolved by

elementary methods is that where I'(t ,t,) is of the form

n n
e | t, -t -a;:t ~a,t
Mle,,t,) = > pe il ) Y Coje v1e 2 (4-22)
i=1 t=) j=i

where R,a; > 0 and the a; and D; are real or occur in complex conjugate pairs.
Here, assuming for the moment that I'(t,,t,) is a covariance function, the non-
stationary character of F(t',tz) arises solely due to transients which die out

as t,,t, - o , the corresponding process being asymptotically stationary.

Now a sufficient condition that F(:,,:z) be a covariance function is that
n
the Fourier Transform of 2 D; e

’“¢|’|
ist

[Ctj] be nonnegative-definite. In this case one can find, by the usual method

be everywhere positive and the matrix

of factoring the Fourier Transform of g D, e-ai'Tl' a weighting function for
a shaping filter of the form !
n
2 e s o
W) =g bt S S ' (4-23)
0 y T <0

whose corresponding inverse is stable. If a white noise process is applied to
the shaping filter at t = 0 with the shaping filter assumed to be at rest at

t = 0, then the covariance function I',(t,,t,) of the output process is

n n
- - d. d - t. - t
Fle,,t,) = Z D, e “ilty-t,l - Z 2 i e BP e e R (T
; a, + a
tat i=1 =y T4 J
n n d,d;, -4, ¢t - t
Note that the function X £ a—i:—é— e e B e %3 e is a covariance function
jmrjer &y j

on T x T. This follows from the fact that if a white noise process is applied
to the shaping filter over the remote past and then removed at t = 0, then the

covariance function of the resulting transient output process for t > 0 will be

n n d. d -a . -a.
b N e B “ e J ‘2 . Subtracting (4-24) from (4-22) there results

i1 jmy T4 J
n n
rz(‘l"z) = ‘Z ZFU e-” ¢, c'ﬂj T, (4-25)
= j-|

which, by the assumptions made on [Cij] , 18 a covariance function. Making use



44

of the results of Section 4.2, this establishes that with a white noise source
and a set of random initial conditions which are uncorrelated with the white
noise source, a process whose covariance function is of the form given in (4-22),
can be generated by the system whose weighting function is that given in (4-23),
Of course, even if the matrix [Ctj] is not nonnegative-definite, the result
still holds as long as [r‘j] is nonnegative-definite.

4.4 THE ‘‘NONDEGENERATE" CASE

The final case where the shaping filter problem can be resolved by
elementary methods is based on consideration of (3-3). Suppose that one were
given a function F(t|,tz) expreased in the form given in (3-4) where each of
the p;(t) is a sum of at least n-terms. Suppose further that upon division of
py(t) by qj(t)andpj(t)by q4(t), it happens that the resulting sums have a term in

t
common. Then by (3-3) it might be assumed that this term is { dtﬁ‘(t)ﬂj(t)

+ r(j' If this happens for all j # i, then the one term of p;(t) which, after
the appropriate division, did not appear to be a term which p;(t) had in common

with some pj(t) might be assumed to be q,(¢)[ {t ﬁf(T) dr + '], If it were,

then ﬂt(t) could be found by dividing it by q;(t), differentiating with respect
to t, and taking the square root of the resulting derivative. Once the bylt)
have been determined, the determination of the r‘j is obviously trivial.

Whenever the procedure sketched above works, it will be said that one is
dealing with a nondegenerate case. At first glance it might appear that this
is indeed a special case since, for example, stationary processes and almost
stationary processes are clearly degenerate cases. However, there appears to
be a reasonably large class of nonstationary processes which lead to nonde-

generate cases. For example, consider the case where F(t,,tt) is

6/5 4 (9/7 2008/7 4 (11/9]
e, (6375 + ¢377) + e2[ed/7 + £JV9) t,2¢,>0

pty) = (4-26)

6/5 4 ¢9/7 20,0/7 4 411/9) .
t[e875 + ¢3/7) + o2[e¥/7 4 )V t,2t,20

Here

q,(t) = ¢ , p (t) = ¢8/8 4+ ¢9/7

galt) = 2, pole) = ¢8/7 & ¢l1/9 (4-27)
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Upon dividing p,(t) by t? and p,(t) by t, it is observed that t’/7 is a common
term. Hence, t®/% appears to be q,(t)[ftdfﬁf(T) +T,]. Proceeding under

this assumption, it is found that B,(t) 1 t t? and I"yy = 0. Similarly, it is
found that B,(t) = % t* and I",, = 0, Letting t*/7 = qz(t)[fotd'rﬁ'(f)ﬁz(r)] +T 0,

it is found that this relationship is indeed satisfied if '), = 0 and similarly

for t*/7, Hence, the weighting function of an appropriate shaping filter is

t72 4 t274 Lt > 7 >0

Wie,7)
= 0 , t < T (4-28)

There does not appear to be any simple criterion for determining whether
a given function '(t ,¢t,) is the covariance function for a nondegenerate caase
short of attempting to carry out the above procedure., Since the procedure is
rather simple and direct, it is reasonable to just proceed as if it were a
nondegenerate case and, if it fails at some step, then one concludes that he
is dealing with a degenerate case and a more complex procedure is required. If
it works, the shaping filter problem has been resolved rather easily, As the

example shows, sometimes nonstationary cases are easier than stationary cases.

Note that when it works, the above procedure always yields a physically
realizable shaping filter. Also note that after the F‘j have been determined,
it is necessary to check and make sure that the matrix [r‘j] is nonnegative-
definite and, hence, represents the covariance matrix of a set of random initial

conditions on the shaping filter.



CHAPTER 5

SOME FUNDAMENTAL RESULTS ON
EXISTENCE AND UNIQUENESS

5.1 INTRODUCTION

As is well known, physically realizable shaping filters do not, in general,
exist for processes with arbitrary covariance functions, For example, as pointed
out in Section 1.2.1 for the stationary case, physical realizability of the shap-
ing filter requires that the spectral distribution function be absolutely con-
tinuous and satisfy the Paley-Wiener criterion given in (1-13). Apparently no
simple criterion analogous to that of Paley and Wiener has been developed for
the general nonstationary case. This is not too surprising considering the
difficulty of the problem, In this chapter, the question of the existence of
physically realizable shaping filters is investigated for the class of separ-
able covariance functions, and for this class, it is shown that, providing one
remarkably simple requirement is met, a physically realizable shaping filter
does indeed exist, In addition, the question of uniqueness of the shaping
filter is also discussed. The restriction to the class of separable covariance
functions certainly seems reasonable in view of the fact that in this case th:
resulting shaping filter is usually rather easily realized physically. This is,

of course, of extreme importance in engineering applications.

It is rather interesting and enlightening to examine the treatment of this
question for the nonstationary case by the authors whose work is summarized in
Chapter 1. Darlington was apparently well aware of the problem and did provide
answers for two rather restrictive cases. They were restrictive in the sense
that he assumed physical realizability of the underlying signal and noise-shaping
filters and either periodicity or regularity at o of the corresponding differential
equation. His anawers clearly leave much to be desired. Batkov simply avoided
the problem by making implicit the assumption that the covariance function was of
the required form (a trick quite commonly used in writing technical papers). One
wonders if he was even aware of the problem. Leonov wasn’t concerned about
physical realizability of the shaping filter (and didn’t discuss or obtain it)
because it wasn’t required for his application. Actually, for his application,

he didn’'t need shaping filters at all.

Finally, it should be noted that physical realizability of the shaping

filter is automatically achieved for the special cases discussed in Chapter 4.
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5.2 CASTING AND RECASTING THE PROBLEM
Neglecting initial conditions for the moment, establishing the existence
of a physically realizable shaping filter amounts to establishing the existence

of a solution of the nonlinear Volterra integral equation of the first kind

t,
Ple,ty,) = [ dr Wie,7) Wle,7) dr,

y 26,20 (5-1)
0
When the covariance function is separable; i.e.,
n
rMe,,t,) = Z gilty) pley) oty 26,20 (5-2)
i=1

it is reasonable in view of Chapters 2 and 3 to consider solutions of the form

n

D g ()B(7) s t>27 20

imy

K(e,7) =
0 s teT (5-3)

In this case, the integral equation becomes

n n n ‘2
Z g le)) pyle,) = E q.(¢t,) Z qj(tz) f dr B,(7) ﬂj("') (5-4)
0

i= {=1 j=t

and upon making use of the linear independence of the q‘(ti) and adding on

initial conditions terms, there results

n t
p,lt) = jg% qj(t) JC dTﬁ‘(T)ﬂj(T) + r‘j ; 620, i=1;000, n

(5-5)

Thus for the case of separable covariance functions, the problem has been re-
duced to establishing the existence of a solution of the simultaneous nonlinear
Volterra integral equations of the first kind given in (5-5). This certainly
represents a reduction over (5-1) since (5-1) actually represents an infinite
set of simultaneous integral equations, one for each value of tyo

The usual procedure in the study of Volterra integral equations of the
first kind is to first convert the integral equation into an integral equation
of the second kind and then apply the standard techniques known for Volterra
integral equations of the second kind. For linear equations, this conversion
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is easily carried out, [25,p.16). That such a procedure can also be carried
out for the equations in (5-5) is perhaps not obvious, but nevertheless it

can be accomplished as follows.

Upon differentiating the equations in (5-5), there results

n t n
pithe) = JZ‘I' qf' () {d'r,Bi(‘r)ﬁj(‘r) + Ty |+ Byte) j; q;(t)B;(¢)

(5-6)

Now examination of (5-6) shows that the multiplier of ﬁi(t) is the same for

n .
all i, namely, g qj(t)ﬁj(t). Let k(t) = Z qj(t)ﬁj(t)- The only problem
j-l j-]

is that k(t) is unknown., If k(t) were known and nonzero for all t > 0, then
the desired conversion to integral equations of the second kind would be
complete upon division by k(t). While at first glance it may appear that,
since k(t) involves the unknown S;(t), there is no hope of being able to
determine it, it can be determined. Solving (5-6) for B;(t) it is found that

n

t
Byt = k='(e)<pit(t) 2 q}”(t) fd'rﬂ‘(v')ﬁj('r) + Ty (5-17)
j=1 0

Substituting back into (5-6) there results

n t
pi') (t) - jz‘ q}”(t) f drB(T)B)(T) + Ty =
. )

n t
= k"%(¢) p}”(t) - Z q}"(t) fd'r,[ﬁ‘('r),bj(-r) + FU X
°

j=1
n n ¢
x j};'qj(t) p;”(t) - z:‘ qj(t) q,‘,"(t) { d‘r[ﬁj(‘r)[ﬁh('r) + rj,,
(5-8)
which, upon cancelling and rearranging, yields
n n n
k2(¢) = Z g, lt) pi'(e) - Z gl (e) E g, le) x
j=t 4 b ot A b
] j.‘
t
N I B NSV RES I N (5-9)
]

But the second term in (5-9) is just p,(t) and hence
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n
k(t) =t Z [qj(t)p}"(t)-q}”(t)pj(t)] (5-10)
j=i

Thus k(t) can be determined from '(ty,t9)., Making use of (3-4) and (3-6),
k(t) can be expressed in the form

k(t) = 1Jr(°"’(:,¢)|,1,-r‘°-"(:,r)|“,=¢ /JO,(:) (5-11)

It is quite important to note that if the f;(t) are to be real then (5-7)
together with (5-11) requires that Jo () >0 for all t > 0. This completes

the conversion of the integral equations of the first kind given in (5-5) to

integral equations of the second kind as given in (5-7).

Of course, there still remains the problem of what to do in case k(t) s 0.
In this case, the equations given in (5-6) reduce to a set of integral equa-
tions of the first kind of the form given in (5-5) with g,(t) and p,(t) replaced
by q}')(t) and pi"(t) respectively, Hence, the logical thing to do is to
re-apply the conversion procedure used in the previous paragraph on (5-5).

When this is done one obtains

n
t
Bytt) = kiMe) ¢ pile) - Z g () fdr/ii('r),bj('r)’ff“‘j
j=1 o
(5-12)
where
n
ko le) = ¢ ) gt e) pf2le) ~ gf2he) p{"e) = £ 5[0, (1)
i=) !
(5-13)

For the same reason as before, it is required that J, ,(t} > 0 for all ¢ 2> 0.
Naturally, if k (t) = 0, then one re-applies the procedure to the new equa-

tions etc,

When k{t) = 0 [or k,(t) =0, etc.] for some values of t but not identically,
then one is dealing with a more complicated type of integral equation which
Picard called an equation of the third kind. Such cases have been studied for

linear equations by Lalesco (26].

The problem now has been reduced to establishing the existence of a solu-

tion of the integral equations of the second kind given in (5-7). To do thia, use



will be made of some results due to T, Sato [27). Since Sato makes use of
Schauder’s fixed point theorem in his treatment of existence questions, a short

discussion of fixed point theorems is in order.
5.3 DISCUSSION OF FIXED POINT THEORENMS

The basic idea underlying fixed point theorems can be nicely demonstrated
by the following simple example [28, p.118]. Let C be the set {X : 0 < X < 1}
and let o(X) be a continuous, single-valued transformation of C into itself (i.e,,
o(x) is a continuous, single-valued function defined on [0,1] for which ol(x)e[0,1)
for all z€[0,1)). Then there exists an 2,€C such that xy = olxy ). x, is called
a fixed point for the transformation o(x). The truth of this result is obvious

from Figure 2.

FIGURE 2

It is also obvious that x, may be either 1 or 0 and that it is not necessarily

unique (there are four fixed points in Figure 2).

The generalization of this simple result to more general sets C in more
general underlying topological spaces has led to the development of rather power-
ful (fixed point) theorems for establishing the existence of solutions (fixed
points) of functional equations in general and integral equations in particular.
For integral equations C becomes a class of functions and o is an integral
operator; e.g., the right-hand side of (5-7); and asserting the existence of a
fixed point for o is clearly equivalent to asserting the existence of a solution
of the corresponding integral equation. One of the most general fixed point
theorems and the one apparently used by Sato was proven by Schauder and can be
stated as follows: [29, p.260).

Schauder’'s Theorem: Let C be a nonempty, compact, convex set from
a locally convex space X and let o be a continuous, single-valued
transformation of C into C. Then there exists an x,€C such that
o(zo) = x4
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In applying Schauder’s Theorem, the essential problem is, of course, to find an
appropriate class C for the problem at hand.

It is interesting to note that the requirements of compactness and convexity
of C stated in the theorem could have been anticipated on the basis of the simple

example given above.
5.4 RESOLUTION OF THE EXISTENCE PROBLEM

Because Sato's treatment of the existence of solutions of the integral equa-
tions he studied is rather sketchy in nature, a development of it is given below.
The development is essentially that given by Sato except that many of the obvious
(to Sato!) steps are filled in, an error is corrected, and the appropriate space X
and set C are clearly defined. The theorem resulting from this development is then
applied to the set of integral equations given in (5-7) and the existence of
physically realizable shaping filters is thereby deduced.

The following notation will be useful
I,: the closed interval 0 £ x < r
A.: the closed domain 0 < t < x < r in the plane (x,t)

D: the closed domain in the space (x,t,uy,.,.,u,)
defined by (x,t)e A, |u; = f,(z)|< p where the
fi(x) are continuous functions on I, and p/2 > ®p*

aax min
[I, filx) - I, filx)l 20

(For any o > 0 there is obviously an I, r > 0
such that the latter inequality is satisfied.)

Now consider the set of integral equations

x
ula) = fla) 4 f Kilxot,uglt), oo, u,le))de (5-14)
0
where K, [x,t,u,, ..., u,] is continuous on D. Hence, there exists an N such that
|K‘[s.t,u|, eses 8] < M for all i and all (x,t,uy, ..., u,)eD. Let u(x) be
the vector-valued function whose components are u‘(:). Having made the above
assumptions, the problem now is to find a space X and a set C which satisfy the

hypotheses of Schauder’s Theoren.
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Let X be the space of all continuous vector functions u(x) on I, and let
X have the topology of uniform convergence on compact (i.e., on all compact
subsets of I ) [30, p.226]. Then X is clearly a locally convex space. (For a
definition of a locally convex space see [29, p.257].) Now, let F be any set

of vector functions ul(x)eX which satisfy the conditions
bu (x) = fila)| < p/2 suy(0) = £,00) (5-15)

on I_, where r' = min (r, p/2M). Then the right-hand side of (5-14), considered
as a transformation o, obviously transforms F into a set F of vector functions
U(x)eX which also satisfy (5-15) on I _,. F

equicontinuous on I, (in fact, F is uniformly equicontinuous on I, ). Hence,

Furthermore, the set F is seen to be

for every € > 0, there exists a &{e) > 0 such that for all E(z)ei,|ui(x|) -
u‘(xz)l < € for every x,, x,6I_, saisfying le - zzl < 8(e), Let C be the set

of all functions u(x)eX which satisfy (5-15) and are such that |u,(x,) = u (x,)]

< € for every x,, x, € I, satisfying |z| ~ le < &l€). Then o clearly trans-
forms C into itself, Furthermore, C, being equicontinuous, is compact by Ascoli’'s
Theorem [30, p.234) and is easily seen to be convex. Finally, since the
Ki[z,t,u,, s, un] are continuous on D and D is closed, they are uniformly
continuous on D, Hence, o is a continuous transformation of C into itself and

is cleerly single-velued. Thus, by applying Schauder’'s Theorem the following

result is deduced,

Theorew 1: Let f, (x) be continuous on I, and let K,[x,t,u,, «cc,u,] on D. Then
on I_, there exists at least one continuous solution of the integral equations

given in (5-14) where r' = min (r, p/2M).

Of course, the solution of (5-14) can be extended to I, or to the boundary

of D by the standard argument.

By a straightforward application of the above theorem to the set of inte-
gral equations given in (5-7), the following important theorem is casily

deduced.

Theorem 2. Suppose that ['(t,,¢t,) is of the form given by (3-4), that qgl’(t)
and pg')(t) exist and are continuous on [0,T], that J°,|(t) >0 on [0,T], and

n
that there exists a nonnegative-definite matrix [rij] such that p (0) - =

s
rijqj(O) ~ 0 for al)l 1. Thew I't ,t,) is a covariance function on (0,7 ad
there exists a physically realizable shaping filter on [0,T]) whose weighti g

function is of the form given in (2-19) where the p;(t) are continuous on

(0,7],
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The only possible difficulty with the application of Theorem 1 to Theorem 2
is that it may be impossible to extend the solution to [0,T) without leaving D.
Since D itself [for (5-7)] can be increased in the u, coordinate directions and
stil] meet the requirements of Theorem 1 indefinitely, this implies that either the
solution can be extended to [0,T) or else the B;(t) become unbounded and, hence,
discontinuous. In the statement of Theorem 2 and in those to follow, it has been
assumed that it is possible to extend the solution to [0,T]. In any case, Theorem
2 holds on [0,T'] where p/2M < T' < T. Cases where the 5,(t) are unbounded are
not of great importance in engineering applications and, furthermore, computational

problems arise in these cases anyway.

When J, ,(t) = 0 on [0,T) but Jy,alt) >0 on [0,T), then the following
modified form of Theorem 2 holds.

Theores 3: Suppose that I'(¢,,¢,) is of the form given by (3-4), that q{z)(t)
and p{z’(t) exist and are continuous on [0,T], that Jy,2(t) >0 on (0,T], and

n
that there exists a nonnegative-definite matrix [r‘j] such that p;(0) - Z F‘j
i=t
n
qj(O) = 0 and pf')(O) - Z rdjq}‘)(O) = 0 for all i, Then F(t,,tz) is a co-
i=1

variance function on [0,T) and there exists a physically realizable shaping
filter on [0,T] whose weighting function is of the form given in (2-19), the
B;(t) are continuous on [0,T], ard ¥(t,t) = 0 for te[0,T].

The further modification of Theorem 2 when Jg, ((t) = J; ,(t) = 0 on
(0,7} but J, 4(t) > 0 on [0,T] is obvious. The case there J, ,(t) = 0 for
some t€[0,7] but not identically is not discussed, but satisfactory results

could possibly be obtained by following up Lalesco’s work [26]).

Finally, suppose that in addition to satiafying the hypotheses of
Theorem 2, the q;(t) and p;(t) have n-continuous derivatives on [0,T) and
the Wronskian of the ¢ (t) doesn't vanish on (0,T]. Then by successive dif-
ferentiation of Equations (5-7) it follows that the 5,(t) have n - 1 con-
tinuous derivatives on [0,T). lience, by the results in Section 2.4, it
follows that the shaping filter cen be characterized by a differential equa-
tion of the form given in (2-1) where the a,(t) and bj(t) are continuous on

(0,7).
5.5 THE QUESTION OF UNIQUENESS OF THE SHAPING FILTER

Having resolved the question of the existence of a physically realizable
shaping filter, the question of the uniqueness of the shaping filter naturally

arises. Examining (5-5), it is clear that there is no unique solution because
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if Wlit,7) is a solution, then -W(t,7) is also a solution. Note that if W(t,7) is
the solution associated with the plus sign in (5-10), then -W{t,7) is the solu-
tion associated with the minus sign, However, the question still remains as to
whether the solution is unique, say, to within a multiplicative factor, The
answer is again no because there may be more than one nonnegative-definite matrix
[rtj] which meets the requirements of Theorem 2 and which lead to different

solutions. As an example, consider the covariance function

1t, - t,| -1t -t

Fle,,t,) = 4/3 ¢ - 5/12 ¢ ZI;t,, t,20

The two matrices

2 - 2/3 8 - 20/3
riy;l = » M) = Jo ,(t) = 1
d - 2/3 1/4 g L~-20/3 25/4] '
Both meet the requirements of Theorem 2. Furthermore, and as direct substitu-
tion into (5-7) shows, f3,(t) = 2et and ﬁz(t) = - e¢?? js a solution on [0,®] for
(4] while B,(t) = - 4¢® and B,(t) = Se2t is a solution on [0,@] for [r‘ij].
Hence, ¥ (t,7) = ge~lt=7) _ e-2lt-7) g W,(t,7) = - 4e'(t") + 5e=2{t-T)gre
respectively the weighting functions of the physically realizable shaping filters
for these matrices. Taking the Laplace transforms of W,{t - 7) and W,(t - 7)
S+3 S -3
d G,(S) = ———————
S+ DS+ 2 20 TSNS 2"
to note that the transfer function of the system associated with [F"j] has
its zero in the left-half plane while that associated with [r:j] has its zero

there results G,(S) = It is interesting

in the right-half plane. In light of this example, the question now arises
as to whether the solution is unique if, say, the plus sign in (5-10) is used
and a matrix [rij] is specified which meets the requirements of Theorem 2. The

answer this time is yes as the theorems proven below show.

Suppose that in addition to satisfying the hypotheses of Theorem 1, the
Kilxyot,uy, ooo, u"]/auj are continuous on D for all i,j. Then, since D is
closed, they are bounded on D. By the mean value theorem, this implies that
a Lipschitz condition is satisfied on D; i.e., that there exists an M, such

||K[x.t,u', coe, ug) - Kz, t,v,, <., vn]|| < M,'lu - v|| where ||u - v|} =

n

2 |“{ - v‘l, etc. Under this stronger assumption, the existence of a solution
i -

to (5-14) on I_, can be established by succeasive approximations as follows,

Let u%(x) = flx) and u/*'(5)
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x
wf*'x) = f,ls) +°f Kz, touflt), oo, udle)] de (5-16)
Then u/*'(x)eD and is continuous for ¢ I,, as is easily established by induction.
Furthermore
x
Hud*V () = wdta) || < M, [1ludte) = wd®t(e)]]de (5-17)
0
and
x
[u'(x) ~ uOz)]|]| < f‘llk[x,t,f,(t), coey fn(t)]|| dt (5-18)
0
< nM x

By iteration, using (5-17) there results

' nM H{ PEAL
Ilu'“ {(x}) - uj(x)ll < —T]—T-i-)-,—-

o
Hence, the series I ||uf*'(x) - u/(x)|| converges uniformly on I, which in
j=o

(5-19)

turn implies that uf(x) converges uniformly on I, to a continuous vector func-
tion u(x) which satisfies (5-14). The uniqueness u(x) can be established as
follows. Suppose v(xz) is another solution of (5-14) in D on I_,. Then, it

follows that (making use of the Lipschitz condition)

x

Huf*Hx) - vix)]] < M, j.||uj(t) - vit)|] dt (5-20)
°

Again, using the fact that ||u®(x) - v(x)|| < nm x, by iteration

jor nMN H{ PEAR
[Juf*'(x) - Az} < I (5-21)

which on letting j — ® implies that ||u(x) - v(x)]|] < 0. Hence, u(x) = wv(x)

on I_, and the solution is unique. This proves the following theorem.

Theorem 4: If the hypotheses of Theorem 1 are satisfied and in addition
Kilx,t,u,, «.., un]/auj are continuous on D, then there exists a continuous
solution of (5-14) on I_, which can be found by successive approximations aad

the solution is unique.

As before, the solution can be extended to I_ or to the boundary of D by
the standard argument. Application of Theorem 4 to (5-7) yields immediately

the following important theorem,
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Theorem 5: If the hypotheses of Theorem 2 or Theorem 3 are satisfied, then
a physically realizable shaping filter exists on [0,T) and, if the sign in
(5-10) is chosen and the matrix [rij] specified, the shaping filter is unique,

This concludes the discussion of existence and uniqueness of physically
realizable shaping filter.



CHAPTER 6
COMPUTATIONAL ASPECTS AND APPLICATIONS

6.1 COMPUTATIONAL ASPECTS

Since the engineer is usually interested in synthesizing shaping filters
for use in applications, he is faced with the problem of actually finding the
weighting functions and/or differential equations characterizing them. Except
for certain special cases such as stationary processes over the interval (-w’m)
and those discussed in Chapter 4, the determination of the B;(t) (or the coef-
ficients of the corresponding differential equation) analytically appears to be
a very difficult, if not impossible, task., Thus, one is naturally led to the
consideration of computational methods, A few remarks on this aspect of the
problem are given below. One of the practical justifications of the work in
Chapter 5 which is apparent here is that it establishes the existence of a
solution and its uniqueness properties at the outset of the problem, thereby

guaranteeing that one is not trying to compute something that does not exist.®

In view of Theorems 4 and 5, one of the immediate methods which come to
mind for computing the B;(t) from (5-7) is that of successive approximations.
This, of course, can be done on either a digital or an analog computer.

Standard references on numerical methods such as Hildebrand [32] discuss the
problem from the standpoint of digital computation and it will not be discussed
further here. In a recent article, Tomovic and Parezanovic [33) have inves-
tigated the use of repetitive analog computers for solving integral equations

by successive approximations. The interested reader is referred to this article

and those referenced therein.,

Since the integral Equations (5-7) are of the Volterra type, they can
also be integrated directly either digitally or on an analog computer in much
the same manner as differential equations for one point boundary value problems
are integrated, This is perhaps a better over-all computational procedure than
successive approximations., Finally, Equations (5-5) can also be solved on an

analog computer by implicit methods.

While a great deal of effort could be spent on developing optimal compu-
tational algorithms for integral equations of the type given in (5-5) and (5-7),
it appears that the standard techniques mentioned above are adequate considering

the need,

‘of course, the work in Chapter 5 is justifiable in its own right because of, among other things,
the insight it gives into the structure of certain classes of stochastic processes.



N
[

6.2 APPLICATIONS

The two main areas of application of shaping filters are to the analysis
(usually on analog computers) of the effects of noise on linear systems and to
the design of linear least-squares, smoothing and predicting filters. While
these applications are well known, a short presentation of them will be given
in the interest of completeness,

The first application is to the problem of finding the variance of the
output of a linear system when the input is a stochastic process whose covariance
function is known. This problem reduces to the computation of an integral of the
form

t t
o2(t) = [ dr, [ dr, Wit,7 Wt 7 Clr,, T,) (6-1)
[¢] [} )
where W(t,7) is the weighting function of the system, '(7,,7,) is the covariance
function of the input process, and c2(t) is the variance of the output process
as a function of time. When a shaping filter exists for the input process, then
T

f 2
Plr,,7,) = db, f d6, W 7, ,6,)0,(7,,6,)8(6, - 6,) +

+ E Z Fyy aglmy) 9 (r,) (6-2)
i=1 jmi

Substitution of (6-2) into (6-1), interchanging the order of the integrations,
and integrating out the & function yields

t t 2

o?(1) f do f dr, We,7,) Wy lr,,6)

2: E: Y -[ dr, Wie,7,) q,{7,} x

+
(st jm
t
x 'f dr, Wte,7,) qj(Tz) (6-3)
0

The term in square brackets in (6-3) represents the weighting function, W(¢,0),
of the cascade of the system and the shaping filter, The computation of the
first integfal in (6-3) is easily carried out on an anslog computer by the
method of adjoint systems described in Laning and Battin [20] when the system
is characterized by a finite-order linesr differential equation, the covariance
function is separable, and the Wronskian of the q,(¢t) exiats and doesn’t vanish

on the interval of interest. The other terms in (6-3) can obviously be computed
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separately with part of the same analog setup. The restriction to separable co-
variance functions and the nonvanishing of the Wronskian of the q,(t) allows the
shaping filter to be simulated as shown in Figure 3, where the a,(t) are given
by (2-31) and the F,(t) are given by [making use of (2-26)]

n

F (t) = jZ gt ey Byt (6-4)
=

Fp (1)

B o

FIGURE 3

Note that no differentiability is required of the f5,(t) for this form of
simulation which in turn requires only continuity of first derivatives of
p;(t) to guarantee continuity of the £,(t) and, hence, continuity of the

F,(t).

The other area of application of shaping filters is to the design of
linear, least-squares, smoothing and predicting filters. The usual formula-

tion of this problem leads to the Wiener-llopf integral equation
£y

Fofltnt,) = [ doWle,,6) Tpp(6,0,) ; 1, 2¢,20 (6-5)
0
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where ") (¢t ,t,) is the covariance function of the desired signal at the
present time t, and the input at time t,, I';;(6,t,) is the covariance function
of the input at time & and time t,, and W(t,,0) is the weighting function of
the desired least-squares filter, When the input is a white noise proceas,

then I'},16,t,) = 8(6 - t,) and (6-5) can be solved immediately, yielding

Ppple,,t,) 5ty 26,20
Wle,,t,) =
0 Pt <ty ' (6-6)

The basic approach used above can still be used even when the input is
not a white noise process providing there exists a physically realizable
linear system (called an inverse shaping filter) whose response to the input
will be a white noise process. In this case, following the Bode-Shannon idea,
the input is first operated on by the inverse shaping filter yielding a white
noise process. Treating the output of the inverse shaping filter as a new

input process and applying the result of the previous paragraph one obtains

Cprelt,t,) 5ty 2 1,20
Wit t,) = (6-1)

where
s
Coreltyty) = [ dr W' (1, 7) Tyl 7) (6-8)
o
Here W;‘(tz,r) denotes the weighting function of the inverse shaping filter.®*
Hence, the weighting function of the least-squares filter is given by
t
a
W, e,) = [ arw e, m)NG (r,t,)) (6-9)
t
For cases where there exists a shaping filter which is characterized
by a finite-order linear differential equation, the differential equation of
the inverse shaping filter is immediately found by interchanging the role of
input and output. Also, in this case, the integral in (6-8) is easily eval-
uated on an analog computer. When ') (¢t,,t,) is separable, then W(t , ¢,) is

separable and, assuming the requisite differentiability, the least-squares

*If one 18 operating over an infinite interval, then the inverse shaping filter must be stable in
the usual sense. For a finite interval, stability in the usual sense loses its meaning and
importance.



63

filter is characterized by a finite-order linear differential equation which

is easily simulated (or built) from analog components,

From the above it is clear that if the differential equation of the
shaping filter is known, then the solution of the least-squares filtering

problem is greatly simplified. For further discussion see Darlington [9].

Kalman and Bucy [34] have given an alternate solution to the least-
squares filtering problem assuming that the shaping filter for the signal
is known and the noise is white noise.* As before, the solution makes use

of an explicit knowledge of the differential equation of a shaping filter,

It should be noted that, if random initial conditions are required
on the shaping filter, then, the approach discussed above must be modified.
Kalman and Bucy claim that their results hold for this case without modifi-

cation.

*There are processes for which a shaping filter does not exist as, for example, stationary
processes with nonabsolutely continuous spectral distribution functions. Hence, Kalman
hes not solved all the problems as he sometimes claims.,



REFERENCES

1. Wold, H., A Study in the Analysis of Stationary Time Series, Uppsala, 1938,

2. Kolmogorov, A., “Sur 1’ Interpolation et Extrapolation des Suites Station-
naires”, C. R. Acad. Scti., Paris 208, pp. 2043-45, 1939,

3. Kolmogorov, A., “Stationary Sequences in Hilbert Space’’, (Russian), Bull,
Math., Univ., Moscow 2, No. 6, 40 pp., 1941.

4. Kolmogorov, A., “Interpolation und Extrapolation von Stationaren Zufalligen
Folgen”, Bull. Acad. Sci., U.S.S.R. Ser. Math. 5, 3-14, 1941.

5. Wiener, N., Extrapolation, Interpolation, and Swoothing of Stationary Time
Series, John Wiley and Sons, Inc., New York, 1949,

6. Hanner, 0., “Deterministic and Nondeterministic Stationary Random Processes”,
Ark. Mat. 1; PP. 161'77’ 1949-

7. Karhunen, K., “Uber die Struktur Stationarer Zufalliger Funktionen", Ark
Mat. 1, PP 141'60, 1960.

8. Bode, H. and C. Shannon, “A Simplified Derivation of Linear Least-Square
Smoothing and Prediction Theory’”, Proc. IRE 38, pp. 417-26, April 1950,

9. Darlington, S., “Nonstationary Smoothing and Prediction Using Network
Theory Concepts”, Transactions IRE, 1 T-S5, pp. 1-11, May 1959.

10, Batkov, A., “Generalization of the Shaping Filter Method to Include
Nonstationary Random Processes’, Automation and Remote Control, Veol. 20,
No. 8, August 1959, pp. 1049-62.

11. Sondhi, M.M., and T. J. Higgins, A Procedure for Synthesizing Linear
Time-Varying Shaping Filters for Generating Nonstationary Random Outputs,
presented at the NACC, 1959, Dallas.

12. Leonov, Y., “The Problem of Shaping Filters and Optimal Linear Systems"”,
Automation and Remote Control, Vol. 21, No. 6, June 1960, pp. 467-71.

13. Doob, J., Stochastic Processes, John Wiley and Sons, Inc., New York, 1953.

14. Grenander, U., and M. Rosenblatt, Statistical Analysis of Stationary Time
Series, John Wiley and Sons, Inc., New York, 1957.

15. Levy, P., “The Integration of a Nonlinear Integral Equation', C. R. Acad.
Sci., 242, 10, 1956.

16. Pugachev, V., Theory of Random Functions and Their Application to Automatic
Control Problems, (Russian), Gostekhizdat, 1957.

17. Pugachev, V., “Integrul Canonical Representation of Random Functions and
Their Application in Deriving Optimal Linear Systems', Automation and Remote
Control, Vol. 18, No. 11, November 1957, pp. 1017-31,

18. Natanson, 1., Theory of Functions of a Real Variable, Frederick Ungar
Publishing Co., New York, 1955.

19. Ince, E., Ordinary Differential Equations, Dover Publications, Inc.,
New York, 1956.



66

20, Laning, J., and R. Battin, Random Processes in Automatic Control,
McGraw-Hill Book Company, Inc., New York, 1956.

21, Coddington, E., and N. Levinson, Theory of Ordinary Differential Equations,
McGraw-Hill Book Company, Inc., New York, 1955.

22. Borskii, V., “On the Properties of the Impulsive Response Function of
Systems with Variable Parameters®, Automation and Remote Control, Vol. 20,
No. 12, December 1959, pp. 1544-49,

23. Loeve, M., Probability Theory, D. Van Noatrand Company, Inc., New York,
1960.

24. Halmos, P., Introduction to Hilbert Space, Chelsea Publishing Company,
New York, 1957.

25. Tricomi, F., Integral Equations, Interscience Publishers, Inc., New York,
1957.

26. Lalesco, T., Introduction a la Theorie dea Equations Integrales, Gauthier-
Villars, Paris, 1922.

27. Sato, T., “Sur 1’Equation Integrale Non Linear de Volterra', Compositio
Mathematica, 11, 1953, pp. 271-90.

28. Lefschetz, S., Introduction to Topology, Princeton University Press, 1949,
29. Berge, C., Espaces Topologiques, Dunod, Paris, 1959.
30. Kelley, J., General Topology, D. Van Nostrand Company, Inc., 1955.

31. Bellman, R., Stability Theory of Differential Equations, McGraw-Hill Book
Company, Inc., 1953.

32. Hildebrand, F., Introduction to Numerical Analysis, McGraw-Hill Book Company,
Inc. » 19560

33. Tomovic, R., and N. Parezanovic, “Solving Integral Equations on a Repetitive
Differential Analyzer”, IRE Trans. on Electronic Computers, Vol. EC-9, No. 4,
December 1960, pp. 503-507.

34. Kalman, R. and R, Bucy, New Results in Filtering and Prediction Theory,
presented at Joint Automatic Control Conference, M.I.T., 1960.



APPENDIX

Suppose the g,(t) are linearly independent on I in the sense that for
n
all finite n there exists no set of constants a, not all zero such that 2
i=)

a; q,{t) = 0 almost everywhere on I and suppose also that fqu(t) dt < @ for

all i, Let N be the closed linear manifold generated by all of the g, (t);
n

i.e., the set of all functions of the form Z a, g,;(t) which are square inte-
i=1

grable over I or limits in the mean of such sums where the a; are arbitrary constants

and & is an arbitrary integer, 1 < a < ®, Let mj be the closed linear manifold
generated by all of the g (t) except qj(t). Then mjt I and by a well known
result [24,p23] there exista a function fj(t)en,-flf;(t) dt > 0, such that
Fi08) LMy ice., such that [ f,(t) X q(t) dt = 0 for all q(t)eh,, Since
q‘(t)émj for all i #j, this shows that there exista a functira fj(t) such that
fIfj(t) g (t) dt = 0 for i #j, Clearly fIf;(t) dt > 0 and fj(t) 1 mj implies
|fIfj}t) q.(¢) dt| > 0, and thus, by suitably norming, this establishes the
exiatence of a function fj(t) such that fI q,(t) fj(t) dt = 8¢j. Since this
can be done for every qj(t), this establishes the existence of a set of functions
fi(t) which together with the q,(t) form e set of biorthonormal functions on I,
Note that since f,(t)ell for all i, fI ff(t) dt <® for all i, Finally, the
fi(t) are obviously linearly independent on I in the same sense as the q.(¢).



